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ABSTRACT 
This paper investigates the conventional and meta-heuristics optimization techniques in detail. In general, every living 

thing in this universe always looking for the optimized way in all the activities. This makes the inspiration to survey the 

optimization techniques. Optimization plays a key vital role in the field of all engineering fields. In this paper, the chief and 

complex power system optimization problem is considered for the investigations. The conventional optimization is an old and 

accurate model for optimizing the power system problems. The increase in dimensionality surges complexity in solving 

dynamic and complex problems. For solving these problems, a certain optimization algorithm is necessary. The intelligent 

Meta-heuristics optimization problems include nature-mimicking techniques that take the motivation in solving these problems. 

The optimization methods applied to the Economic Power Dispatch, Dynamic Economic Power Dispatch, Optimal Power Flow 

and Distributed Generation scheduling problems for better solving. In this regard, the studies are made with these optimization 

techniques for better indulgent. The conducted investigations may evoke some ideas to emerging investigators. 

Keywords :- Economic Power Dispatch, Dynamic Economic Power Dispatch, Optimal Power Flow and Distributed Generation 

scheduling Problems, Optimization Techniques. 

 

 

I.     INTRODUCTION 

Optimization is minimizing or maximizing the 

objective with satisfying the system constraints. Even in our 

home, breadwinners always want to spend their earnings in an 

optimized way with satisfying all other constrictions. 

Meanwhile the world’s one and only chief industry i.e., 

electric power producing industry has to operate in optimized 

manner with maximum utilizing its resources. The economical 

operation of these power sectors made that nation wealthy and 

stimulates the technological development. 

It is not astounding that the advancement of electric 

power consumption in the universe has been the lot 

nevertheless significant power systems is operated in a 

haughtier status of saving and reliability for enriched 

capability in the effort of restructuring. A country’s wealth 

and its eminence are ascertained by the amount of electric 

power exploiting. Based on the power utilized, a country is 

aforementioned as technologically advanced or emerging one. 

These prosper for competition and challenges in developing 

countries like India. In this paper the economic proper 

scheduling using conventional and meta-heuristics 

optimization techniques are discussed further down. 

 

II.     CONVENTIONAL OPTIMIZATION 

METHODS  

Generally, the conventional method includes the 

Unconstrained Optimization methods, Linear Programming, 

Non Linear Programming, Quadratic Programming and 

Dynamic Programming, Newton’s Method, Interior Point etc. 

For all these approaches the traditional methods power 

optimization problems such as Economic Power Dispatch 

(EPD), Dynamic Economic Power Dispatch (DPED), Optimal 

Power Flow (OPF) and Distributed generation scheduling etc., 

are reviewed below in detail. 

A. Unconstrained Optimization  

Unconstrained optimization (UO) methods are the 

base of the constrained optimization procedures. Utmost all 

the constrained optimization problems in power system is 

transformed into unconstrained one. Initially the numerical 

methods were articulated [1]. The prime UO problems in the 

power system include Quasi Newton technique [2], conjugate 

gradient optimization methods [3], Newton Raphson 

technique [4], gradient technique [5], Lagrange multiplier 

technique for solving EPD [6] etc., 

B. Linear Programming  

Linear Programming (LP) is a traditional 

optimization technique valid for the problems in which the 

goal function and the limitations seem to linear purposes of 

the choice variables [7]. The limitations in LP problem might 

be in the kind of equalities or inequalities. However, 

numerous other approaches ought to establish throughout the 

days for elucidating LP problems. The LP methods has 
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numerous benefits including reliability, superior convergence 

properties, rapidly recognize infeasibility and adapts hefty 

power systems operational limits comprising contingency 

limitations. The main hindrances of these methods are 

imprecise assessment of power structure losses and inadequate 

capability to discover precise result related through an exact 

nonlinear model. Accordingly LP is broadly used to crack the 

power system problems includes steady state security regions 

to OPF [8], EPD [9], Reactive power optimization problems 

[10], Dynamic EPD [11], EPD including losses [12], Security 

constrained EPD [13], Fast LP to OPF [14], Optimal 

scheduling of micro grid [15], Unit commitment problem [16] 

etc., 

C. Non Linear Programming 

In real world, the power system problems are 

nonlinear. Consequently, the Non Linear Programming 

constructed systems can effortlessly operate the power system 

operation problems [17] with nonlinear objective functions 

and limitation, Emission based EPD [18]. These problems 

include EPD with Valve Point Loading (EPDVPL) [19], 

Interior point NLP to OPF [20], mixed integer NLP [21], 

Optimal placement of DG [22] etc. For solving the NLP 

problem, the major step is to pick an exploration route in the 

iterative process, this is established by the first partial 

derivatives of the equations. Thus, these approaches are 

denoted as first-order approaches. NLP built approaches have 

superior precision than LP created methods and ensure global 

convergence, which signifies that the convergence is ensured 

unrelated to the initial stage. However, the sluggish 

convergent level could trail because of twist and turn in the 

exploration route. 

D. Quadratic programming 

Quadratic programming (QP) [23] is a superior 

practice of NLP. The objective of QP technique is quadratic 

and limitations are in linear type. The frequently exercised 

goal function in power system optimization problem is the 

generator goal function; this is typically quadratic in nature. 

As a result, there is no simplification for this objective 

function resolved by QP. Conversely, the QP is employed to 

solve the power system optimization problems such as EPD 

[24], Large scale EPD [25], DPED [26] etc. 

E. Dynamic Programming 

Dynamic programming (DP) is an arithmetical 

method extremely appropriate in lieu of the multistage 

optimization problems [27]. The DP process, while 

appropriate, signifies or indulges a multistage assessment 

problem as a succession of specific-stage assessment 

problems. The dissolution need be systematized in such a 

manner that optimum result of novel problem can be 

accomplished from ultimate solution of certain phase 

problems. DP technique is applied to EPD [28], Dynamic 

dispatch [29], Wind power Commitment and dispatch [30], 

Microgrid energy management [31], Coordinated control of 

DG [32], Multi objective distributed system [33], Renewable 

energy scheduling using adaptive DP [34], Reactive power 

optimization in wind farms [35] etc., 

F. Newton’s Method 

Newton’s Method (NM), entails the calculation of 

the second - order partial derivatives of the power flow 

equations with additional limitations thus known as a second - 

order scheme. The essential situations of optimality usually 

called as Kuhn -Tucker conditions. This method is preferred 

for the event of quadratic convergence properties. It is applied 

to power system problems such as voltage phase and 

frequency estimation [36], NM for radial distributed system 

[37], Nonlinear power flow equations [38], Three phase power 

flow for islanded operation using newton trust region method 

[39], Newton scheme for large power system [40], Three 

phase distribution network [41] etc. 

G. Interior Point Technique 

The Interior Point (IP) technique is formerly used to 

crack the linear programming. It is quicker and feasibly 

superior than the traditional simplex procedure in LP. The IP 

techniques were foremost pertained to explain the optimal 

reactive power problems [42], EPD with ramp rate constraints 

[43], IP method for nonlinear OPF [44], Improved IPF for 

OPF [45], Security constraints energy markets [46], State 

estimation [47], Trust region IP for OPF [48] etc. 

In recent times, metaheuristic technique has been 

introduced and encompassed to solve the problems in all the 

engineering fields. In this scope of work, the literature review 

is analyzed for the power system problems alone.    

 

III. METAHEURISTIC OPTIMIZATION 

METHODS 

Utmost several metaheuristic optimization techniques 

are constructed on certain biological performances. The recent 

metaheuristic procedures for engineering optimization 

problems embrace the Genetic Algorithms (GA), Differential 

Evolution (DE), Simulated Annealing (SA), Ant Colony 

Optimization (ACO), Artificial Bee Colony (ABC), 

Biogeography Based Optimization (BBO),  Particle Swarm 

Optimization (PSO),  Bacterial Foraging Optimization (BFO) 

and various others. 

Each algorithm has its own advantages and 

shortcomings. Based on the power system real time problems, 

the optimization algorithms appropriate to solve the specific 

problems. Certain other fails to resolve distinctive problems. 

Thus, suitable selection of the algorithm for concerned 

problem is essential. The below discussion deals the 

advantages and inadequacies of some specific optimization 

techniques applied to field of power system. 

H. Genetic Algorithm 

A genetic algorithm is an exploration heuristic 

technique that imitates the practice of natural progression [49]. 

This algorithm is consistently used to produce valuable results 

to exploration problems. GA appropriates to the superior 
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development of Evolutionary Algorithms (EA), which 

produce results to problems using systems motivated by 

natural progression such as inheritance, mutation, selection 

and crossover. In addition, some benefits of GA include it 

reveal every problem that defined with the chromosome 

encoding. Meanwhile the GA implementation method is not 

reliant on the erroneousness surface, so that it can resolve 

multi-dimensional, non-differential, non-continuous and 

uniform non-parametric problems. This technique is 

extremely affluent to recognize and it virtually does not need 

the mathematical acquaintance. GA has certain drawbacks 

comprise the alternative problems may not be tattered. Since 

owing to incompetently recognized fitness functions that 

produce depraved chromosome blocks despite there simply 

worthy chromosome impedes the crossover operation. Around 

there is not at all entire guarantee that a GA will treasure a 

global optimum. It ensues repeatedly once the inhabitants 

have many issues.  

The variants in GA includes Parallel GA for 

hypercube [50], Parallel GA [51], Niched pareto GA [52], 

Competitive GA [53], Non-dominated sorting GA [54], Fast 

and elitist GA [55], Atavistic GA [56], Improved GA [57], 

Hybrid Taguchi GA [58] etc.  

In addition, the GA applied to power flow 

optimization problem such as engineering problem 

optimization by GA [59], Distribution systems loss 

configuration [60], Modified GA for optimal control problems 

[61], Economic dispatch with valve point effects [62], 

Reactive power optimization [63], Optimal selection of 

capacitors for DS [64], Refined GA for economic dispatch 

[65], Large-scale economic dispatch [66], Economic dispatch 

with prohibited operating zones [67], Unit commitment 

problem [68], Optimal reactive power dispatch by adaptive 

GA [69], Combined heat and power based EPD [70], Power 

EPD based hybrid GA [71], OPF by enhanced GA [72], 

Hybrid real coded GA for EPD [73], Network constrained 

EPD [74], Pareto GA for multi-objective EPD [75], improved 

GA for EPD with multiple fuels [76], Hybrid GA for EPD 

with valve point effect [77], Non-convex economic dispatch 

with AC constraints by real coded GA [78], Quantum GA for 

dynamic dispatch with valve point effect in wind plant [79], 

environmental economic dispatch of Smart Microgrid using 

chaotic quantum genetic algorithm [80], Hybrid GA and 

bacterial foraging to dynamic economic dispatch [81] etc. 

I. Differential Evolution 

The differential evolution (DE) algorithm is an 

evolutionary technique [82] that aids a somewhat acquisitive 

and fewer stochastic method to unraveling the problem than 

traditional EA such as GA, Evolutionary Programming (EP) 

and Evolution Strategies (ES). It is a modest and prevailing 

population- constructed stochastic shortest exploration 

technique for resolving arithmetical optimization problems in 

continuous exploration interim. DE also encompasses an 

effective approach of self-adapting mutation by means of 

lesser inhabitants. The capabilities of DE are its modest 

construction, simple procedure, convergence property, 

superiority of results and heftiness. In DE, the unique trial 

generation approach is essential to be pre-quantified through 

its limitations remaining regulated by inefficient trial and error 

arrangement i.e. it takes superior computational attempt. 

The variants in DE techniques incorporate the Self-

adaptive DE [83], DE applied to practical problems [84], 

opposition-based DE [85], Improved Self-adaptive [86], DE 

with global and local neighborhoods [87], JADE [88], 

modified DE [89], DE with harmony search [90], DE with 

dynamic parameters [91] etc.  

It is also applied to power system optimization 

problems such as DE – quadratic programming to EPD [92], 

Non-convex EPD by hybrid DE [93], economic load dispatch 

[94], Hybrid DE with BBO for EPD [95], Modified DE [96], 

Shuffled DE for EPD with valve point effects [97], Improved 

DE for EPD [98] etc. 

J. Simulated Annealing 

Simulated annealing (SA) is an arbitrary hunt method 

for global optimization hindrances and it emulates the 

annealing progression in material treatment [99]. While the 

iron refrigerates and embargoes into the glassy condition 

through the least strength and bigger crystal proportions in 

order to diminish the flaws in metal arrangements. The 

strengthening progression comprises the suspicious constraint 

of heat and freezing level, repeatedly termed annealing plan. 

Contrasting the gradient-based approaches and additional 

deterministic exploration approaches, it has the drawback of 

subsisting stuck into local minima. Actually, it has remained 

verified that the simulated annealing will converge to its 

global optimality if adequate arbitrariness is used in the 

amalgamation through precise gradual cooling. This technique 

utilizes a Markov chain that convergence in suitable 

circumstances regarding its conversion probability. SA 

technique typically converges in the more simulation time 

than other search methods, i.e., it takes much iteration for 

convergence. 

The variants are briefed as follows very fast 

simulated re-annealing [100], Parallel SA [101], SA with EPD 

based algorithm [102], Adaptive GA [103], SA based multi-

objective optimization algorithm [104] etc., 

The application of SA to power problems such as 

Unit commitment [105], GA-SA for EPD [106], SA based 

goal-attainment method for EPD [107], Chaotic SA neural 

network model for EPD [108], SA approach to EPD with 

valve point loading [109], Hybrid Ant Colony Optimization -

SA to emission EPD [110], Hydrothermal scheduling with 

emission EPD using cultural DE [111] etc., 

K. Ant Colony Optimization 

The Ant Colony Optimization (ACO) is stimulated 

by the factual ants for problems that can be condensed to 

locating the optimal paths in the examination area [112]. ACO 

is constructed on the representation of ants in search of food 

grains, so that makes sure that, an ant desires to exit the peak 

(mountain in optimization field) and initiate to roam into an 

arbitrary path. Although the slight pest bounces nearby, it 

http://www.ijetajournal.org/


International Journal of Engineering Trends and Applications (IJETA) – Volume 3 Issue 4, Jul-Aug 2016 

ISSN: 2393-9516                          www.ijetajournal.org                                                  Page 43 

leaves a trajectory of pheromone. Consequently, the ant has 

discovered somewhat foodstuff, it can trail its arrangement 

behind. By accomplishing, it dispenses additional coating of 

pheromone on the track. An ant that drifts the pheromone will 

trail its path through assured possibility. Every ant that 

treasures the foodstuff will evacuate particular pheromone on 

the trail. In this instance, the pheromone concentration of the 

trail will surge and additional ants will track it toward the food 

and return. Greater the pheromone concentrations, more 

amount of ants deferment on the trajectory. Conversely, the 

pheromones disappear in particular time. Uncertainly when 

the entire food is treasured, they will not at all rehabilitate and 

the trail will evaporate later. Now, the ants will precede to 

different indiscriminate positions. The pros of the ACO are 

intrinsic parallelism. In this algorithm, the constructive 

response reports for speedy finding of worthy results. In 

addition, it is effective for travelling salesman and analogous 

problems. It may be exercised in dynamic attentions i.e., this 

algorithm adjusts to variations include new distances, etc. 

Lastly the hindrances of the ACO are theoretic examination is 

challenging. Mainly the probability dissemination deviates by 

iteration and computational interval to convergence is 

unreliable. 

The advancement in ACO comprises of immunity 

based ACO [113], Pareto ACO [114], Hybrid neural-ACO 

[115], Parallel ACO [116], Improved ACO [117] etc.   

ACO is applied to power system optimization 

problems such as EPD [118], multiobjective ACO to EPD 

with pollution control [119], microgrid power management 

[120], EPD with non-smooth cost function [121], chaotic 

ACO electric load forecasting [122], Differential Evolution 

based ACO to EPD [123], DPED with valve point loading 

[124], Enhanced ACO [125], Hybrid ACO–ABC–HS to EPD 

[126] etc. 

L. Tabu Search 

The Tabu Search (TS) technique is generally 

exercised for cracking combinatorial optimization glitches 

[127]. It is an iterative exploration procedure, categorized by 

the rehearsal of an amenable memory. This technique is 

capable to expel local minima and to hunt zones outside an 

indigenous least possible. The TS scheme is predominantly 

manipulated to elucidate power system problems. It is tough 

in describing operative reminiscence organizations and tactics 

that are problem reliant. 

The variants in TS algorithm includes fast TS 

algorithm [128], parallel TS [129], hybrid TS [130], advanced 

TS [131], parallel TS [132], multi-objective TS [133] and so 

on. 

It also applied to power optimization problems such 

as OPF [134], Improved TS for EPD [135], Genetic–based TS 

for optimal Distribution Generation (DG) allocation [136], 

DPED [137], Modified TS for DG reconfiguration [138], 

Maintenance scheduling for generating units [139], Hybrid TS 

for Solving EPD [140] etc. 

 

M. Biogeography Based Optimization 

In the Biogeography Based Optimization (BBO) 

algorithm [141], biogeography is defined as nature’s approach 

of allocating species (plant, or living organism). At BBO, the 

island (land mass) of habitat through a high Habitat Suitability 

Index (HSI) is compared to the good (best optimal) solution 

and the landmass by means of a low HSI solution as a poor 

(worst) solution. The High HSI solutions fight to convert 

better than low HSI solutions. The Low HSI solutions 

motivated to counterfeit worthy characters from high HSI 

solutions. Collective characters persist in the high HSI 

solutions, even though simultaneously acts as innovative 

characters in the low HSI solutions. This occurs when 

particular representatives (agents) of a species specified 

towards an environment, whereas other representatives persist 

in their indigenous habitat. The solutions with poor 

characteristics approve many innovative features from the 

worthy solutions. These accumulations of innovative 

characters on low HSI solutions could promote the superiority 

of the optimal results. Further, the BBO technique has assured 

some distinctive qualities astounded numerous drawbacks of 

the typical approaches as revealed as follows. In the GA 

owing to the crossover process the worthy solution attains 

initially, occasionally the solution may fail to attain the fitness 

in later iterations. Similarly, in BBO has not any crossover 

technique and due to migration process the solution modified 

progressively. The most important process of this algorithm is 

Elitism. This process retains the best solution and made the 

proposed BBO technique more competent with the other 

techniques. Considering the PSO algorithm, the solutions are 

further probable to group together in analogous groups to 

search the optimal solution, though in BBO algorithm the 

solutions does not group owing to its mutation operation. 

Simultaneously, the limitations handling is considerably 

accessible when compared to BFO technique. Although the 

conventional BBO has an edge over other algorithms, it 

suffers from poor convergence characteristics when 

considering complex problems. In the BBO algorithm, the 

deprived solution admits some new features from worthy ones, 

this progresses the superiority of problem solutions. 

Comparably this is another distinctive component of BBO 

technique, when associated with alternative methods.  

The variants in BBO include Blended BBO [142], 

Oppositional BBO [143], Markov models for BBO [144], 

real-coded BBO with mutation [145], BBO based differential 

evolution algorithm [146], krill herd algorithm migration in 

BBO [147] etc., 

BBO is also applied to power system problems 

include EPD [148], Hybrid DE-BBO for emission dispatch 

[149], multi constraint OPF [150], BBO for optimal phasor 

measurement unit placement [151], economic emission 

dispatch [152], Neighborhood search-driven BBO for optimal 

load dispatch [153], power management of a small 

autonomous hybrid power system [154], Polyphyletic 

migration operator and orthogonal learning aided dynamic 

EPD [155], Enriched BBO [156], dynamic EPD of integrated 

multiple-fuel and wind power plants [157] etc. 

N. Artificial Bee Colony algorithm 
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Artificial Bee Colony algorithm (ABC) is stimulated 

by the scavenging activities of honeybees [158]. Bees bring 

nectar together after massive ranges round their hive. The bee 

clusters have been perceived to direct bees to accumulate 

nectar from flower spots compared to the quantity of honey 

accessible on every area. Bees converse through everyone at 

the hive by means of a wiggle jazz that appraises new bees 

available in the hive by way of the path, space as well as 

superiority assessment of honey traces. The dominant 

advantage of ABC process is that it ensures not entail exterior 

limitations include crossover and mutation rate, like in the 

instance of GA, DE and other EAs besides these are difficult 

to regulate erstwhile. The additional benefit is that the global 

exploration capability in the procedure is executed by 

commencing vicinity trace making apparatus that is analogous 

to mutation procedure. 

The selected variants of ABC includes hybrid 

simplex ABC [159], Gbest-guided ABC [160], Modified ABC 

[161], Rosenbrock’s ABC [162], Efficient ABC [163], 

Dynamic clustering with improved ABC [164], Levy flight 

ABC [165] etc.  

The problems solved in power system using ABC 

technique includes EPD with non-smooth cost functions [166], 

Dynamic EPD [167], Optimal DG allocation and sizing [168], 

Optimal reactive power flow [169], unit commitment [170], 

Optimal hybrid PV/WT sizing and distribution system 

reconfiguration using multi-objective ABC [171], Multi-

objective OPF [172], Non-convex EPD with valve point 

loading [173], Multi area EPD [174], Economic and emission 

dispatch [175], Chaotic bee colony optimization for dynamic 

EPD with valve point loading [176], New modified ABC for 

EPD [177] etc. 

O. Particle Swarm Optimization 

Particle Swarm Optimization is a method of group 

intellects in which the behaviour of a living social 

arrangement like the flock of birds or schools of fishes are 

replicated [178]. Once the group stares for food, its beings 

will smear in the atmosphere and travel round autonomously. 

Every creature has a grade of choice or randomness in its 

actions that permits it to treasure food deposits. The central 

advantages of PSO is as follows when associated with all 

other evolutionary computation algorithms, all the particles 

incline to congregate to the finest result rapidly. PSO is 

affluent to execute and there are limited factors to regulate. It 

is computationally economical subsequently it consumes little 

memory and central processing unit speed necessities. 

Shortcomings of PSO embrace slow convergence in 

sophisticated exploration phase, i.e., an inadequate local 

search capability. 

The variants in PSO comprises of dynamic 

neighborhood PSO [179], Fitness-distance-ratio based PSO 

[180], Discrete PSO [181], Improved PSO [182], effective co-

evolutionary PSO [183], Adaptive PSO [184], Chaos-

enhanced accelerated PSO [185], improved accelerated PSO 

[186] etc. 

The optimization problems in power system includes 

OPF [187], EPD with generator constraints [188], Multiple 

objective PSO for EPD [189], Hybrid PSO for unit 

commitment [190], New PSO to non-convex EPD [191], 

Chaotic PSO EPD with generator constraints [192], Anti-

predatory PSO non-convex EPD [193], Adaptive PSO for 

DPED [194], PSO with time varying acceleration coefficients 

for non-convex EPD [195], Reserve-constrained multi area 

environmental EPD [196], Quantum-inspired PSO for valve 

point EPD [197], Improved PSO for non-convex EPD [198], 

Improved chaotic PSO for DPED [199], Hybrid multi-agent 

based PSO for EPD [200], Iteration PSO for EPD with 

generator constraints [201], GA-PSO for optimal DG location 

and sizing [202], Hybrid PSO optimum simultaneous multi-

DG distributed generation Units placement and sizing [203], 

multi-objective function in reconfigured system for optimal 

placement of distributed generation [204], Optimal location 

and sizing determination of Distributed Generation and 

DSTATCOM [205] etc., 

P. Bacterial Foraging Optimization 

Bacterial Foraging Optimization (BFO) employs 

biochemical-identifying tissues to sense the intensity of 

nutritious affluences in its surroundings [206]. The bacteria 

travels across the surroundings by the sequences of tumbling 

and trailing, evading the toxic ingredients and reaching nearer 

to nutrition spot ranges in the practice named chemotaxis. In 

addition, the bacteria can emit a biochemical mediator that 

fascinates its mates, ensuing in an ancillary practice of 

interaction. Stimulated through the E.Coli scavenging scheme 

it is used to apply for various optimization problems. In the 

conventional BFO, the foraging behaviour of bacteria explores 

the global optimum solution, which is administered by inertial, 

cognitive and collective behaviour. The memory and 

collective behaviour are the main apparatuses of the 

scavenging behaviour, which supports the swarm of bacteria 

to find nutrient gradients in optimal path. BFO is superior to 

PSO in provisions of convergence, sturdiness and accuracy. 

The application of BFO in electric power system 

problem include BFO-Nelder-Mead algorithm for EPD [207], 

Fuzzy based BFO for emission EPD [208], Dynamic adaptive 

BFO for EPD with valve point effects [209], Multiobjective 

fuzzy dominance based BFO for economic emission dispatch 

[210], Multiobjective BFO for EPD [211], Intelligent BFO to 

EPD [212], Improved BFO for combined static/dynamic 

environmental economic dispatch [213], DPED with security 

constraints using BF PSO-DE [214], Emission, Reserve and 

EPD with non-smooth and non-convex cost functions using 

hybrid BFO-Nelder-Mead algorithm [215], EPD using PSO-

BFO [216], Hybrid bacterial foraging – simplified swarm 

optimization for practical optimal dynamic load dispatch 

[217], Multiobjective BFO to solve environmental EPD [218], 

Optimal size and siting of multiple DG in distributed system 

using BFO [219], Modified BFO for optimal placement and 

sizing of DG [220], Hybrid multi-objective improved BFO for 

EPD considering emission [221] etc.  
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IV. CONCLUSIONS 

This paper precisely inclines certain attentions of 

conventional and meta-heuristics nature oriented swarm 

intelligence optimization algorithms in the field of power 

system. Among them the nature inspired optimization 

relinquishes the special considerations. The considered 

optimization techniques with certain variants applied to 

general engineering and in the power-scheduling problem is 

presented. The power dispatching problems such as Economic 

Power Dispatch, Dynamic Power Economic Dispatch and 

Optimal Power Flow problem are surveyed briefly. Each 

algorithms advantages and shortcoming are discussed. The 

conducted investigations are affluent indulgence and helpful 

to enlightening researchers. 
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