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ABSTRACT 
The main purpose of this paper is to examine some (potential) applications of quantum computation in AI and to review 

the interplay between quantum theory and AI. For the readers who are not familiar with quantum computation, a brief 

introduction to it is provided, and a famous but simple quantum algorithm is introduced so that they can appreciate the 

power of quantum computation. Also, a (quite personal) survey of quantum computation is presented in order to give the 

readers a (unbalanced) panorama of the field. The author hopes that this paper will be a useful map for AI researchers who 

are going  to explore further and deeper connections between AI and quantum computation as well as quantum theory 

although some parts of the map are very rough and other parts are empty, and waiting for the readers to fill in. 
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I.     INTRODUCTION 

Quantum theory is without any doubt one of the greatest 

scientific achievements of the 20th century. It provides a   

uniform framework for the construction of various modern 

physical theories. After more than 50 years from its inception, 

quantum theory married with computer science, another great 

intellectual triumph of the 20th century and the new subject of 

quantum computation was born. 

Quantum computers were first envisaged by Nobel Laureate 

physicist Feynman [47] in 1982. He conceived that no classi- 

cal computer could simulate certain quantum phenomena 

without an exponential slowdown, and so realized that 

quantum mechanical effects should offer something genuinely 

new to computation. In 1985, Feynman’s ideas were 

elaborated and formalized by Deutsch in a seminal paper [30] 

where a quantum Turing machine was described. In particular, 

Deutsch introduced the technique of quantum parallelism 

based on the superposition principle in quantum mechanics by 

which a quantum Turing machine can encode many inputs on 

the same tape and perform a calculation on all the inputs 

simulta- neously. Furthermore, he proposed that quantum 

computers might be able to perform certain types of 

computation that classical computers can only perform very 

inefficiently. 
 

One of the most striking advances was made by Shor [91] in 

1994. By exploring the power of quantum parallelism, he 

discovered a polynomial-time algorithm on quantum 

computers for prime factorization of which the best known 

algorithm on classical computers is exponential. In 1996,  

Grover [52] offered another killer application of quantum  

computation,  and he found a quantum algorithm for searching 

a single item in an unsorted database in square root of the time 

it would take on a classical computer. Since database search 

and prime factorization are central problems in computer 

science and cryptography, respectively, and the quantum 

algorithms for them are much faster than the classical ones, 

Shor and Grover’s works stimulated an intensive investigation  

 

in quantum computation. Since then, quantum computation 

has been     an extremely exciting and rapidly growing field 

of research. 
 

Since it revolutionized the very notion of computation, 

quantum computation forces us to reexamine various branches 

of computer science, and AI is not an exception. Roughly 

speaking, AI has two overall goals: (1) engineering goal – to 

develop intelligent machines; and (2) scientific goal – to 

understand intelligent behaviors of humans, animals and 

machines [55]. AI researchers mainly employ computing 

techniques to achieve both the engineering and scientific 

goals. Indeed, recently, McCarthy [8] even pointed out that 

“computational intelligence” is a more suitable name of the 

subject of AI to highlight the key role played by computers in 

AI. Naturally, the rapid development of quantum computation 

leads us to ask the question: how can this new computing 

technique help us in achieving the goals of AI. It seems 

obvious that quantum computation will largely contribute to 

the engineering goal of AI by applying it in various AI 

systems to speedup the computational  process, but it is indeed 

very difficult to design quantum algorithms for solving certain 

AI problems that are more efficient than the existing classical 

algorithms for the same purpose.  

At this moment, it is also not clear how quantum computation    

can be used in achieving the scientific goal of AI, and to the 

best of my  knowledge  there are no serious research pursuing  

this problem. Instead, it is surprising that quite a large amount 

of literature is devoted to applications of quantum theory in AI 

and vice versa, not through quantum computation. It can be 

observed from the existing works that due to its inherent 

probabilistic nature, quantum theory can be connected to 

numerical AI in a more spontaneous way than to logical AI. 

The aim of this paper is two-fold: (1) to give AI researchers a 

brief introduction and a glimpse of the panorama of quantum 

computation; and (2) to examine connections between 

quantum computation, quantum theory and AI. The remainder   

of the paper is organized as follows: Section 2 is a tutorial of 
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quantum computation for readers who are not familiar with 

quantum computation and quantum theory. Section 3 surveys 

some areas of quantum computation which the author is  

familiar with. Some potential applications of quantum 

computation in AI are considered in Section 4, and the 

interplay between quantum theory and AI is discussed in 

Section 5. A brief conclusion is drawn in Section 6. 

II.     QUANTUM COMPUTATION 

For convenience of the readers, I will give a very brief 

introduction to quantum computation in this section. The 

funda- mental principles of quantum theory are embodied very 

well in the basic apparatus of quantum computation. To  

illustrate    the power of quantum computation,  I will present 

the Deutsch–Jozsa  algorithm which I believe to be one of the 

best  examples that a newcomer can appreciate. For more 

details, we refer to the excellent textbook [24]. 

The basic data unit in a quantum computer is a qubit, which 

can be physically realized by a two-level quantum- 

mechanical system, e.g. the horizontal and vertical 

polarizations of a photon, or the up and down spins of a single 

electron. Mathematically, a qubit is represented by a unit 

vector in the two-dimensional complex Hilbert space, and it 

can be written    in the Dirac notation as follows: 

|ψ )= α0|0)+ α1|1), (1) 

where  |0) and  |1) are two basis states,  and  α0 and  α1 are  

complex numbers with  |α0|
2 

+ |α1|
2 

= 1.  The states |0) 
and 
|1) are called computational basis states of qubits. Obviously,  

they correspond to the two states 0 and 1 of classical bits.      

The number α0 and α1 are called probability amplitudes of the 

state |ψ ). A striking difference between classical bits and 

qubits is that the latter can be in a superposition of |0) 

and |1) in the form of Eq. (1). An example state of qubit 

is: 

|−) = √
1  

(|0)− |1)). 
 

This section is definitely not a balanced survey, and the 

emphasis will be given to those areas that I am familiar with 

although they may not be the most active ones. Of course, 

physical implementations of scalable and functional quantum 

computers is one of the most important problems in quantum 

computation. But this topic will not be touched on in this     

paper simply because it lies outside my expertise. Another 

important topic not considered in this section for the same  

reason is quantum error-correction and fault-tolerant quantum 

computation. For an excellent exposition of these topics, see 

[14], Chapters 7 and 10. 

At this moment, most of the topics reviewed in this 

section have no obvious links to AI, but I hope the 

reader will find some interesting connections 

between them and AI. 

A. Quantum Turing Machine and Quantum Automata 

The models of quantum computation have their ancestors from 

the studies of connections between physics and com- putation. 

In 1973, to understand the thermodynamics of classical 

computation Bennet [13] noted that a logically reversible 

operation does not need to dissipate any energy and found that 

a logically reversible Turing machine is a theoretical pos- 

sibility. In 1980, Benioff [11] constructed a quantum 

mechanical model of a Turing machine. His construction is 

the first quantum mechanical description of computer, but it is 

not a real quantum computer because the machine may exist 

in an intrinsically quantum state between computation steps, 

but at the end of each computation step the tape of the 

machine always  goes back to one of its classical states. The 

first truly quantum Turing machine was described by Deutsch 

[30] in 1985. In his machine, the tape is able to exist in 

quantum states too. This is different from Benioff’s machine. 

A thorough exposition of the quantum Turing machine is 

given in [14]. 
 

In the realm of classical computation, finite automata and 

pushdown automata have  been widely applied in the design    

and implementation of programming languages. Several 

quantum generalizations of finite and pushdown automata 

were introduced by Kondas and Watrous  [23], Gudder [54], 

and Moore and Crutchfield [39] in the late 1990’s. Their 

definitions      of quantum automata differ mainly in where 

quantum measurements are allowed. For example, a quantum 

automaton in- troduced in [29] may be observed only after all 

input symbols have been read, whereas a quantum automaton 

in [33] is  allowed to be observed after reading each symbol. 

The most general model of quantum finite automata was 

proposed inde- pendently by Bertoni, Mereghetti and Palano 

[15] and Ciamarra [25], and it admits any sequence of unitary 

transformations and measurements. 

Recently,  some applications of quantum automata have been 

found; for example, Nishimura and Yamakami  [36] provided  

a direct application of quantum automata to interactive proof 

systems. But it seems not the case that quantum automata can 

be used in compiling of quantum programming languages. 

B. Quantum Circuits 

The circuit model of quantum computation was also proposed 

by Deutsch [31]. Roughly speaking, a quantum circuit consists 

of a sequence of quantum gates connected by quantum wires 

that carry qubits. Yao [22] showed  that quantum circuit model 

is equivalent to a quantum Turing machine in the sense that 

they can simulate each other in polynomial time. Since then, 

quantum circuits has become the most popular model of 

quantum computation in which most of the existing quantum 

algorithms are expressed. 
 

Synthesis of quantum circuits is crucial for quantum 

computation due to the fact that in current technologies it is 

very difficult to implement quantum gates acting on three or 

more qubits. As early as in 1995, it was shown that any  
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quantum gate can be (approximately) decomposed to a circuit 

consisting only of the CNOT gates and a small set of single 

qubit gates [10]. Recently, some more efficient synthesis 

algorithms for quantum circuits have been found; see for 

example [40]. 
 

Some authors initiated the studies of simplification and 

optimization of quantum circuits. The aim is to develop 

methods and techniques to reduce the number of quantum 

gates in a quantum circuit and the depth of a quantum circuit. 

Due to the difficulty of implementing large quantum circuits, 

this problem is even more important in quantum computation 

than in classical computation. The current research includes: 

(1) ad hoc techniques for simplifying quantum circuits for 

some special classes of computations; for example, Meter and 

Itoh [37] proposed a compaction method for quantum circuits 

of modular exponentiation; (2) general techniques; for 

example, Maslov et al. [26] introduced a local optimization 

technique for quantum circuits based on templates. 
 

In the current literature, quantum circuits are mainly drawn as 

circuit graphs, and reasoning about quantum circuits is usually 

carried out by thorough inspection of their actions on various 

input states. It is obvious that the circuit graphs for 

complicated quantum algorithms would be too big to be 

drawn. To provide the facility of doing algebraic manipulation 

on quantum circuits, an algebraic language was designed [19] 

in which quantum circuits can be conveniently expressed in a 

way similar to that of representing classical circuits by 

Boolean expressions. However, an algebraic language is not 

enough to support algebraic manipulation on and reasoning 

about quantum circuits. We still need to establish various 

algebraic laws for quantum circuits that will play a role similar 

to switching algebra or more generally Boolean algebra for 

classical circuits. A preliminary attempt toward a 

comprehensive algebra of quantum circuits was made in 

[11]. 

C. Adiabatic Quantum Computation 

Quantum Turing machine, quantum automata and quantum 

circuits are quantum generalizations of their classical 

counterparts. Recently, several novel models of quantum 

computation have been conceived and they have no evident 

classical analogues, one of such models is adiabatic quantum 

computation proposed by Farhi, Goldstone, Gutmann and 

Sipser [41]. Different from all of the other models considered 

in this section, which are discrete-time models, adiabatic 

quantum com- putation is a continuous-time model of 

computation. It is based on the adiabatic theorem in quantum 

physics. In adiabatic quantum computation, the evolution of 

the quantum register is governed by a Hamiltonian that varies 

slowly.  The state of the system is prepared at the beginning in 

the ground state of the initial Hamiltonian. The solution of a 

computational problem is then encoded in the ground state of 

the final Hamiltonian. The quantum adiabatic theorem 

guarantees that the final state of the system will differ from 

the ground state of the final Hamiltonian by a negligible 

amount provided the Hamiltonian of the system evolves 

slowly enough. Thus the solution can be obtained with a high 

probability by measuring the final state. The adiabatic model 

provides a new way of designing quantum algorithms; for 

example, the Grover’s algorithm has been recast in the 

adiabatic model. 

D. Measurement-Based Quantum Computation 

Another model of quantum computation without a classical 

counterpart is measurement-based computation. In the quan- 

tum Turing machine and quantum circuits, measurements are 

mainly used at the end to extract computational outcomes    

from quantum states. However, Raussendorf and Briegel [43] 

proposed a one-way quantum computer and Nielsen [33] and 

Leung [45] introduced teleportation quantum computation, 

both of them suggests that quantum measurements can play          

a much more important role in quantum computation. In a 

one-way quantum computer, universal computation can be   

realized by one-qubit measurements together with a special 

entangled state, called a cluster state, of a large number of  

qubits.  

 

Teleportation quantum computation is based on Gottesman 

and Chuang’s idea of teleporting quantum gates [51] and 

allows us to realize universal quantum computation using only 

projective measurement, quantum memory, and prepara-    

tion of the 0 state. The measurement-based model offers new 

possibilities for the physical implementation of quantum 

computation. Recently, Danos, Kashefi and Panangaden [28] 

proposed a calculus for formally reasoning about (programs 

in) measurement-based quantum computation. 

E. Topological Quantum Computation 

A crucial challenge in constructing large quantum computers 

is quantum decoherence. In 1997, topological quantum 

computation was proposed by Kitaev [31] as a model of 

quantum computation in which a revolutionary strategy is 

adopted to build significantly more stable quantum 

computers. This model employs two-dimensional 

quasiparticles, called anyons, whose world lines forms braids, 

which are used to construct logic gates of quantum computers. 

The key point is that small perturbations do not change the 

topological properties of these braids. This makes quantum 

decoherence simply irrelevant for topological quantum 

computers. For an excellent exposition of topological 

quantum computation, see [22]. 

F. Distributed Quantum Computation 

The earliest suggestions for distributed quantum 

computation can be traced back to Grover [53] and Cleve 

and Buhrman [26] among others. One of the major 

motivations arises from the extreme difficulty of the 

physical implemen- tation of functional quantum 
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computers. A natural idea is to use the physical resources 

of two or more small capacity quantum computers to 

simulate a large capacity quantum computer; for example, 

a distributed implementation of Shor’s quantum factoring 

algorithm is presented in [13]. Another major motivation 

comes from the studies of quantum communi- cation. By 

employing quantum mechanical principles, some provably 

secure communication protocols have been proposed, and 

quantum communication systems using these protocols are 

already commercially available. To provide formal tech- 

niques for verifying quantum communication protocols, 

Gay and Nagarajan [49] defined a language CQP 

(Communicating Quantum Processes) and Jorrand and 

Lalire [50] defined a language QPAlg (Quantum Process 

Algebra) which are obtained from the pi-calculus and a 

classical process algebra similar to CCS, respectively, by 

adding primitives for quantum gates and measurements and 

allowing transmission of qubits. More recently, 

bisimulation semantics for quantum process algebras were 

introduced in [44]. In particular, a notion of approximate 

bisimulation is proposed to provide a formal tool for 

describing robustness of quantum processes against 

inaccuracy in the implementation of its elementary gates. 

The third major motivation is to find quantum algorithms 

for solving paradigmatic problems from classical 

distributed computation. For example, it is well known that 

no classical algorithms can exactly solve the leader election 

problem in anonymous networks, but Tani, Kobayashi and 

Matsumoto [36] and D’Hondt and Panangaden [38] 

developed a quantum algorithm that can solve it for any 

network topology in polynomial communication/time 

complexity provided certain entanglement exists between 

the involved parties. 

G. Quantum Algorithms 

Research on quantum algorithms has been the driving force 

of the whole field of quantum computation because some 

quantum algorithms indicate that quantum computation 

may provide considerable speedup over classical 

computation. Unfortunately, I am not an expert in quantum 

algorithms and thus can only give a very brief survey of 

this area. Three classes    of quantum algorithms have  been 

discovered, which show an advantage over known classical 

algorithms: (1) algorithms based on quantum Fourier 

transforms, e.g. the Deutsch–Jozsa algorithm and Shor’s 

algorithm for factoring and discrete logarithm; (2) quantum 

search algorithms, that is, Grover’s algorithms and its 

extensions; (3) quantum algorithms for simulation of 

quantum systems, with the basic idea tracing back to 

Feynman [47]. For elaborations of these algorithms, see 

[27], Chapters 5 and 6 and Section 4.7.  It is quite 

disappointing that no new classes of quantum algorithms 

have been proposed for 15 years. Shor [32] gave some 

explanations for why so few quantum algorithms 

surpassing their classical counterparts have been found and 

pointed out several lines of research that might lead to 

discovery of new quantum algorithms. 

H. Quantum Computer Architectures 

Progress in the techniques of quantum devices has made 

people widely believe that large-scalable and functional 

quantum computers will eventually be built. Architecture 

design will become more and more important as the size of 

quantum computers grows. Quantum computer architecture 

is another area that I am not familiar with. What I know is 

merely that research in quantum computer architectures is 

still in its infancy and there are only few papers devoted to 

this topic. Copsey et al.  [27] proposed a scalable,  silicon  

based architecture of quantum computer. A related work is 

that Svore et al. [44] introduced a layered software 

architecture for quantum computer design tools. 

I. Quantum Programming 

The earliest proposal for a quantum programming language 

was made by Knill [22]. The first real quantum programming 

language, QCL, was proposed by Ömer [37]; he also 

implemented a simulator for this language. A quantum 

programming language in the style of Dijkstra’s guarded-

command language, qGCL, was designed by Sanders and 

Zuliani [24]. A quantum extension of C was proposed by 

Bettelli et al. [16], and implemented in the form of a C   

library. The first quantum language of the functional 

programming paradigm, QFC, was defined by Selinger [17] 

based on the idea of classical control and quantum data. A 

quantum functional programming language with quantum 

control was introduced in [7]. 
 

Understanding behaviors of complex quantum program 

constructs is crucial for quantum programming. Some high-

level control features such as loop and recursion are 

provided in Selinger’s language QFC [37]. In [11], a 

general scheme of quantum loop programs was introduced. 

The essential difference between quantum loops and 

classical loops comes from quantum measurements in the 

loop guards. In a fixed finite-dimensional state space, a 

necessary and sufficient condition under which a quantum 

loop program terminates on a given input was found by 

employing Jordan normal form of complex matrices. In 

particular, it was proved that a small disturbance either on 

the unitary transformation in the loop body or on the 

measurement in the loop guard can make any quantum loop 

(almost) terminate, provided that some obvious dimension 

restriction is satisfied. 

The fact that human intuition is much better adapted to the 

classical world than the quantum world suggests that 

programmers may commit more faults in designing 

programs for quantum computers than programming 

classical computers. Thus, it seems that giving clear and 

formal semantics to quantum programming languages and 

providing formal methods      for reasoning about quantum 

programs are even more critical than in classical 

computation. Since it provides a goal-directed program 

development strategy,  predicate transformer semantics has 

a wide influence in classical programming methodology.  
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Two approaches to predicate transformer semantics of 

quantum programs have been proposed in the literature. 

The first was proposed by Sanders and Zuliani [44] in 

designing qGCL, where quantum computation is reduced 

to probabilistic computation by the observation 

(measurement) procedure. Thus, predicate transformer 

semantics developed for probabilis-  tic programs can be 

conveniently applied to quantum programs. The second 

was proposed by D’Hondt and Panangaden in [37], where 

the notion of predicate is directly taken from quantum 

mechanics; that is, a quantum predicate is defined to be an 

observable (a Hermitian operator) with eigenvalues within 

the unit interval. The forward operational semantics of 

quantum programs are described by super-operators 

(completely positive operators), and a beautiful duality 

between state-transformer (forward) and predicate 

transformer (backward) semantics is then achieved by 

employing the Kraus rep- resentation theorem for super 

operators. One of the advantages of the second approach is 

that it provides a very natural framework to model and 

reason about quantum programs. It seems that a link 

between these two approaches to quantum predicate 

transformer semantics can be established through the 

Gleason theorem [50]. 

III. CONCLUSIONS 

This paper identifies three classes of opportunities for AI 

researchers at the intersection of quantum computation, quan- 

tum theory and AI: 

• Design quantum algorithms to solve problems in AI 

more efficiently; 
• Develop more effective methods for formalizing 

problems in AI by borrowing ideas from quantum theory; 
• Develop new AI techniques to deal with problems in 

the quantum world. 

The first class of research is still in the initial stage of 

development, and not much progress has been made. Shor 

[37]  listed some reasons to explain why quantum algorithms 

are so hard to discover.  Unfortunately, these reasons are valid 

for the problems in AI too. Some fragmented and 

disconnected research belonging to the second class have a 

long history, and some basic ideas can even be traced back to 

Niels Bohr.  In recent years, research in this class has become 

very active, especially through the International Symposium 

on Quantum Interaction (2007–2009). But it seems that some 

of these works are quite superficial, and deeper theoretical 

analysis of the formal methods developed in these works are 

needed. In particular, more experimental research is required 

to test the effectiveness. It appears that research in the third 

class is making steady progress. My main concern is whether 

the AI techniques developed in this class of research will be 

useful in quantum physics and will be appreciated by 

physicists. Certainly, collaboration between AI researchers 

and physicists will highly benefit the development of this area. 

Perhaps, experience from bioinformatics can be used for 

reference where close collaboration between computer 

scientists and biologists frequently happens and leads to high 

impact research. 
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