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I. INTRODUCTION 

There exists a wide literature concerning the 

approximation of relations (i.e. multivalued 

functions) by means of singlevalued continuous 

functions. The first contribution, due to Cellina [4], 

deals with the approximation in the Hausdorff metric. 

More results in the same context may be found in 

[1,8,9,18]. The approximation of relations in the 

Vietoris and in the locally finite topologies has been 

studied in [11,12]. In particular, [11] shows that if X 

is a dense in itself countably paracompact normal 

space and F : X → R is an upper semicontinuous 

multivalued function such that F(x) is a non-empty 

compact interval for every x ∈ X, then F may be 

approximated with real-valued continuous functions 

in the Vietoris topology (also in the locally finite 

topology if X is a q-space [17]). The conditions for 

the approximability of F are also necessary under 

some suitable assumptions on the space X. 

Furthermore, in [12] it is proven that a countably 

paracompact normal space X is strongly zero-

dimensional if and only if every closed subset F of X 

× R, with pr1(F) = X and | F(x)| = 1 at every isolated 

point, belongs to the closure of C(X) in the Vietoris 

topology. 

The purpose of this paper is studying 

approximability in the Fell topology and to give a 

partial answer to Question 5.5 in [14] and to Question 

7 in [13]. In Section 2, Theorem 8 shows that every 

upper semicontinuous multivalued function F such 

that each value F(x) is a non-empty closed interval of 

R (a singleton if x is isolated) belongs to the closure 

of C(X) in the Fell topology. Furthermore, we 

provide some necessary conditions for Fell 

approximability with elements of C(X). 

Section 3 is devoted to the zero-dimensional case 

and shows that results analogous to [12] hold with 

simpler hypotheses for the approximability in the Fell 

topology.The last section deals with approximability 

by means of minimal usco maps [5,7,10] with finite 

range.. 

The main theorems are presented through some 

lemmas, some of which have an intrinsic interest 

within this topic. For instance Lemmas 7, 19 and 24, 

in the respective frameworks, show that only the 

upper topology needs to be checked. 

1. Preliminaries 

Let X and Y be Hausdorff spaces. If F ⊆ X × Y , we define F(x) = { y ∈ Y : (x, y) ∈ F } . In this way 

each subset of X × Y is viewed as a multivalued function and every multivalued function is identified with its graph. 
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A multivalued function F from X to Y is said to be upper semicontinuous at x ∈ X provided that for every open 

subset 

V ⊆ Y such that F(x) ⊆ V there exists a neighbourhood U of x such that F(z) ⊆ V for every z ∈ U. The multivalued 

function F is said to be: 

• upper semicontinuous, usc for short, if it is upper semicontinuous at every x ∈ X. 

• cusc if it is usc and F(x) is connected for every x ∈ X. 

• usco if it is usc and F(x) is a non-empty compact subspace of Y for every x ∈ X. 

• cusco if it is cusc and usco. 

We denote by CL(X × Y ) the set of non-empty closed subsets of X × Y and by C(X, Y ) the subspace consisting of 

continuous single-valued functions from X to Y . We write C(X) for C(X,R). CL∗(X × Y ) indicates the subset of 

CL(X × Y ) consisting of the elements F such that F(x) = ∅ for all x ∈ X. 

The following two results are well known and illustrate the connection between the semicontinuity of F and the 

property of F of having a closed graph. 

Proposition 1. Let Y be a regular space. Assume that F is a multivalued upper semicontinuous function from X to Y 

such that F(x) is closed for each x ∈ X. Then F belongs to CL(X × Y ). 

The next proposition holds for every topological space X (e.g. see [3, p. 112]): 

Proposition 2. Let F ∈ CL(X × Y ) such that F(X) = pr2 F has compact closure in Y . Then F is upper 

semicontinuous. 

In general, we denote the complement of E in Z by Z \ E. If E ⊆ X × Y , we also indicate the complement of E in 

X × Y by Ec. 

For every open subset W of X × Y define W + ={ F ∈ CL(X × Y ): F ⊆ W } and W − = { F ∈ CL(X × Y ): F ∩ W 

=∅} . 

The upper (lower) Vietoris topology on CL(X × Y ) is defined as the topology which has a base (subbase) 

consisting of sets of the form W + (of the form W −), where W ranges over all open subsets of X × Y . The Vietoris 

topology is the supremum of the upper and lower Vietoris topologies. 

The upper Fell topology on CL(X × Y ) is defined as the topology which has a base consisting of sets of the form 

W +, where W ranges over open subsets of X × Y such that W c is compact. The Fell topology is the supremum of the 

upper Fell topology and the lower Vietoris topology. 

For more results about hyperspace topologies, see also [2,16]. 

 

II. REAL FUNCTIONS 
 

The following statement adds an equivalent condition to a well-known theorem of Dowker–Katetov. 

Lemma 3. The following conditions on a T1 space X are equivalent: 

(i) X is normal and countably paracompact. 

(ii) For every pair f , g of real-valued functions defined on X, where f is upper semicontinuous and g is lower 

semicontinuous and f (x) < g(x) for every x ∈ X, there exists h ∈ C(X) such that f (x) < h(x) < g(x) for every x ∈ 

X. 

(iii) If W is an open subset of X × R such that W (x) is a non-empty connected set for all x ∈ X, then there exists a 

function h belonging to W + ∩ C(X). 

Proof. (i) ⇔ (ii) is a theorem of Dowker–Katetov [6, 

5.5.20]. (ii) ⇒ (iii) See [11, Lemma 4.1]. 
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∩ U j ∅ = 

(iii) ⇒ (ii) Let W. Obviously W (x) is non-empty and connected for each 

x. The semicontinuity of f and is an open set. Consequently there 

exists a continuous real-valued function h belonging to W  

If V is a family of subsets of a set Z and E ⊆ Z, we denote by St(E,V) the set . 

The following lemma is an alternative version of [11, Lemma 4.3]. 

Lemma 4. Let X be a Tychonoff space and let F ∈ CL∗(X × R) be the graph of a cusc map. Let W0 be an open 

subset of X × R such that F ⊆ W0. Assume that one of the following conditions holds: 

(i) F is a cusco map. (ii) W0
c is compact. 

Then there exists an open set W ⊆ X × R such that F ⊆ W ⊆ W0 and W (x) is connected for every x ∈ X. 

Furthermore, in the latter case, the open set W may be chosen in such a way that W + ∩ C(X,R) = ∅ . 

Proof. Case (i) Since F(x) is a compact interval, there exist an open neighbourhood Ax of x and an open interval Jx ⊃ 

F(x) such that Ax × Jx ⊆ W0. Let Ox ⊆ Ax be an open neighbourhood of x such that F(z) ⊆ Jx for every z ∈ Ox. We are 

to prove that W× Jx) ⊆ W0 is the required open set. going 

 Let z ∈ X. Then W (z) ={ Jx: z ∈ Ox } is connected because is the union of a collection of intervals containing F(z). 

Case (ii) Let (a,b) be an open bounded interval such that pr , so that X × (R \ [a,b ] ) ⊆ W0. If we 

define G(x) = F(x) ∩ [a,b ] , we obtain that G is a cusc multivalued function which assumes (possibly empty) 

compact values. Arguing as in case (i), there exist an open neighbourhood Nx of x and an open interval Jx, with Jx = 

∅ whenever G(x) = ∅ , such that G(z) ⊆ Jx for every z ∈ Nx and Nx × Jx ⊆ W0. For every x ∈ X put 

Ix . 

Then F(x) ⊆ Ix and Nx × Ix ⊆ W0. Let Ox ⊆ Nx be an open neighbourhood of x such that F(z) ⊆ Ix for 

Ox. Take the set W  Ix) ∪ (Kc × R), where K . Clearly F ⊆ W ⊆ W0 every z ∈ 

and it is easy to show that W (z) is connected for every 

Since K is normal and countably paracompact, by Lemma 3 there exists h ∈ C(K,R) such that (x,h(x)) ∈ W for 

every x ∈ K. Any continuous extension of h from the compact subspace K to X satisfies the last requirement.  Notice 

that complete regularity in Lemma 4 is required only for the last statement of case (ii). 

Lemma 5. Let X be a regular space and take F ∈ CL(X × R) such that | F  | for every isolated 

point x ∈ X. If F , where every Wi is an open subset of X × R, then for each i there exist a non-empty open subset Ui 

of X and a non- empty open interval Vi such that Ui × Vi ⊆ Wi
, and if i = j one of the following conditions is satisfied: 

• Ui ; 

• Ui is a singleton and Ui × Vi = U j × V j. 

Proof. For each i choose a point (xi, yi) ∈ Wi ∩ F. Let I1 denote the set of indexes i such that xi is isolated and let I2 be 

the complement of I1 in the set of indexes i. If xi ∈ I1 put Ui = { xi } and let Vi be an open connected neighbourhood of 

yi such that i. Notice that if xi = xj for i, j ∈ I1, then yi = y j. In this case we replace Vi with . 

The points (xi, yi) ∈ Wi with i ∈ I2 may be replaced by points (x  , Wi in such a way that the first coordinates 

are distinct (use the fact that the points xi for i ∈ I2 are limit points). Finally, by using the regularity of X, we can 

choose open neighbourhoods Ui of xi and Vi of yi satisfying the requirements, with the caution that xj ∈/ Ui if i ∈ I2 and 

j  

The following result provides a required condition for a multivalued function to be approximated in the lower 

Vietoris topology. 

Proposition 6. Let X and Y be Hausdorff spaces and let Z ⊆ CL(X × Y ) such that | Z | for each isolated point 

x ∈ X and for each Z ∈ Z. If F belongs to the closure of Z in the lower Vietoris topology, then | F  | for each 

isolated point x ∈ X. 

Proof. Let x ∈ X be an isolated point. If V1, V2 ⊆ Y are disjoint open subsets such that F(x) ∩ Vi = ∅ , then ({ x} × 

V1)− ∩ − Z = ∅ 
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∩ j = ∅ 

The following lemma suggests that only the approximation in the upper topology is to be checked. 

Lemma 7. Let X be a Tychonoff space. Let W be an open subset of X × R such that W (x) is connected for every x. 

Suppose that 

W +  Wn are non-empty open subsets of W such that 

 pr1(Wi) ∩ pr1(W j) = ∅ whenever i = j, then C(X) ∩W . 

Proof. For each i choose a non-empty open subset Ui of X and a non-empty bounded open interval Vi in such a way 

that Ui × Vi ⊆ Wi and UiUfor i = j. Notice that  for every x ∈ Ui. Let f ∈ W + ∩ C(X) and xi ∈ Ui for each i. 

Then there exist an open interval Ji containing { f (xi)}∪ Vi and an open neighbourhood Gi of xi such that Gi ⊆ Ui 

and Gi × Ji ⊆ W (here use that { f (xi)} ∪ Vi is contained in a continuum of W (xi)). By using the continuity of f it is 

not restrictive to suppose that f (Gi) ⊆ Ji. For each i take a point ti ∈ Vi and a continuous function λi : X → [ 0,1] such 

that λi(xi) = 1 and λi(x) = 0 for every x ∈/ Gi. The required function is: 

g t  

We are ready to state the first theorem. 

Theorem 8. Let X be a Tychonoff space. If F ∈ CL∗(X × R) is the graph of a cusc map which maps isolated points 

into singletons, then F belongs to the closure of C(X) in the Fell topology. 

that F , where  is compact. Proof. Let W0, W1,..., Wn be open subsets of X × R such 

Choose an open subset W of X × R satisfying the conditions of Lemma 4. By 

applying Lemma 5 to F and Wi ∩ W , we can choose m 

distinct 

non-empty open setsopen sets W and U1 ×UVk1×, . . . ,Vk Uin such a way thatm × Vm satisfy the conditions of Lemma 

7, we obtain that U if h = k and mk=1(Uk × VCk()X) ∩ W . Since the− =∅ . 

Consequently, C=∅ 

Notice that without additional hypotheses on X (countable paracompactness and normality, see [11]) even a 

cusco map which maps isolated points into singletons is not necessarily approximable by continuous functions in 

the Vietoris topology. 

Example 9. Let S be an uncountable set and let p denote the filter of co-countable subsets of S. Consider the 

topological space S ∪ { p } , where all points of S are isolated and a local base at p traces the elements of p on S. Let 

N ∪ {ω } denote the one-point compactification of the discrete countable space N. Let X = (S ∪ { p }) × (N ∪ {ω }) \ 

(p,ω). The closed subsets S × {ω } and { p } × [n,ω) for every n ∈ N show that X is neither normal nor countably 

paracompact. 

Take an uncountable subset A ⊆ S such that S \ A is uncountable and denote by g the characteristic function of A. 

Consider the cusco multivalued function so defined: 

 for all , 

F if x 

Theorem 8 says that F is approximated by continuous functions in the Fell topology. In order to show that F cannot 

be approximated by continuous functions in the Vietoris topology, consider the open neighbourhood H of F so 

defined: 

H . 

Assume there exists f ∈ C(X) ∩ H+ and put yn = f (p,n) for every n ∈ N. A standard argument of cardinality shows 

that there exists a co-countable subset T ⊆ S such that f (x,n) = yn for every x ∈ T and n ∈ N. Take any x1 ∈ A ∩ T 

and x2 ∈ (S \ A) ∩ T . The continuity of f at the points (x1,ω) and (x2,ω) implies that there exists k ∈ N such that yk = f 

http://www.ijetajournal.org/


International Journal of Engineering Trends and Applications (IJETA) – Volume 5 Issue 2, Mar-Apr 2018 
 

ISSN: 2393-9516                       www.ijetajournal.org                                                  Page 357 

 

 

and yk , a contradiction. Consequently F does not belong to the closure of C(X) in the upper 

Vietoris topology. 

Remark 10. A cusc map F ∈ CL(X × R) may belong to the closure of C(X) in the Fell topology even if the set { x: 

F(x) = ∅} is a non-empty open set. For instance, consider the map| x| > 1, F(x) = [ 1, +∞) if | x| = 1, 

F(x) = ∅ if | x| < 1. F on the real interval X = [ −2,2] defined as follows: F(x) = 1x| if 

In some situations, a multivalued map which belongs to the closure of C(X) in the Fell topology must be 

necessarily cusc at any point x such that F(x) = ∅ . 

Proposition 11. Let X be a locally connected locally compact regular space and let F ∈ CL(X × R). If F is in the 

closure of C(X) in the Fell topology, then F is a cusc map at every point x such that F(x) = ∅ . 

Proof. Argue as in [11, Lemmas 3.2, 3.3] by choosing the neighbourhood U of x as a connected open set with 

compact closure.  

None of the two relevant properties of the space X in Proposition 11 can be removed. 

Example 12. 

• Compact case. Let X  with the usual topology and let F  1 and F(0) = {0,1} . Then F 

belongs to the closure of C(X) in the Vietoris topology (cf. [12, Theorem 3.2]). 

• Locally connected case. Let X = J(ℵ 0) be the hedgehog with ℵ 0-many spines. Denote by 0 the centre of the 

hedgehog and by In the nth spine. Define F(x) = 1 for every x = 0 and F(0) = {0,1} . Then F belongs to the 

closure of C(X) in the Fell topology (although not in the Vietoris topology, see [11, Lemmas 3.2, 3.3]). Indeed, 

consider F ∈ (Kc)+, where K is a compact subset of X × [0,1] . If Kn = K ∩ (In × [0,1] ) and rn = maxpr1(Kn), then 

for every ε > 0 there exists j such that r j < ε. Put E j = { x ∈ I j: x ∈ (ε,2ε)} . An approximating continuous 

function may be defined in such a way that it assumes the value 0 at some point of E j and the value 1 at every 

point of X \ E j. 

If we want an example which is not upper semicontinuous, it is enough to change the definition of F in both cases 

by putting F  for x = 0. 

A multivalued map belonging to CL(X × R) is said to be bounded on E ⊆ X if F  is bounded [15]. 

If F is bounded (on X), then F is upper semicontinuous (see Proposition 2). The following Proposition is proved in 

[2, Proposition 6.2.11]. 

Proposition 13. Let F ∈ CL(X × Y ) be a compact valued usc map. Then F(E) is compact for each compact 

subspace E of X. 

Propositions 2 and 13 imply the following: 

Corollary 14. Let X be a compact space and let F ∈ CL(X × Y ) be a compact valued map. Then F is usc if and only 

if F is bounded. 

Proposition 15. Let X be a continuum and let F ∈ CL(X × R) be a bounded map. If F belongs to the closure of C(X) 

in the Fell topology, then: 

(i) F(x) = ∅ for every x ∈ X; 

(ii) the graph of F is a connected subset of X × R (hence F(X) is a connected subset of R). 

Proof. Consider a bounded interval (a,b) such that F(X) ⊆ (a,b). 

(i) By way of contradiction, suppose there exists a point h ∈ X such that F(h) = ∅ and let V = X \ {h } . 

Put 

. 

Then K is an open set in the Fell topology, F ∈ K, K ∩ C(X) =∅ , a contradiction. 

(ii) By way of contradiction, assume that the compact subset F is the union of two disjoint non-empty closed 

subsets F1 and F2. Then F1 and F2 are compact subsets of X × (a,b). Therefore there exist disjoint open subsets W1, 

W2 of X × (a,b) such that F1 ⊆ W1 and F2 ⊆ W2. Put 
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. 

Then L is an open subset in the Fell topology, F ∈ L, L ∩ C(X) =∅ , a contradiction.  

Remark 16. The function F of Remark 10 shows that the boundedness of F is necessary in Proposition 15. Even if 

F satisfies the hypotheses of Theorem 8, the graph ofx = 0, F(0) = R. F is not necessarily connected. For example, 

consider F(x) = 1x| if | x|  1 and 

Proposition 17. Let X be a continuum. If F ∈ CL(X × R) belongs to the closure of C(X) in the Fell topology, then 

F(X) is connected. 

Proof. By contradiction, assume there exist real numbers a < b < c such that a ∈ F(X), c ∈ F(X), b ∈/ F(X). Then F 

belongs to 

. 

Since X is connected,  

Remark 18. Let X be a locally compact locally connected space. Let F ∈ CL(X × R) belong to the closure of C(X) in 

the Fell topology. If F(x) = ∅ and F(x) ⊆ (a,b), then either x is an isolated point or x is a limit point for the set 

. To prove this assertion, use a construction similar to the one made in Proposition 15 by putting 

, 

where U is a connected neighbourhood of the non-isolated point x such that U is compact, F(y) = ∅ for 

every y ∈ U \{ x} and z is a point of U \{ x} . 

The zero-dimensional case 

We provide an analogous version of Lemma 7 in the zero-dimensional case, that is if X has a base of clopen sets. 

Lemma 19. Let X be a zero-dimensional space and let Y be a Hausdorff space. Let W be an open subset of X × Y 

such that W + ∩ 

C(X, Y ) . If W1,..., Wn are non-empty open subsets of W such that pr1(Wi) ∩ pr1(W j) =∅ whenever i = j, then C(X, Y ) ∩ 

W . 

Proof. Let g ∈ C(X, Y ) ∩ W +. For each i ∈{1,...,n } choose a clopen set Ui ⊆ X and a point yi ∈ Y such that Ui ×{ yi } ⊆ Wi. 

The required element of C(X, Y ) is the function f so defined: f (x) = yi if x n
i=1 Ui.  

Lemmas 5 and 19 imply the following: 

Corollary 20. Let X be a zero-dimensional space and let F ∈ CL(X × Y ) such that | F  | for every isolated 

point x ∈ X. If F belongs to the closure of C(X, Y ) in the upper Fell topology, then F belongs to the closure of C(X, 

Y ) in the Fell topology. 

Remark 21. If Y is a compact space, then [ ({ x} × Y )c ] + ∩ CL∗(X × Y ) = ∅ . Consequently CL∗(X × Y ) is closed in CL(X 

× Y ) in the upper Fell topology. 

Theorem 22. Let X be a zero-dimensional space and let Y be a Hausdorff space. 

• If Y is compact, then the closure of C(X, Y ) in CL(X × Y ) with the Fell topology is the set of all F ∈ CL∗(X × Y 

) which take a single value at every isolated point x ∈ X. 

• If Y is not compact, then the closure of C(X, Y ) in CL(X × Y ) with the Fell topology is the set of all F ∈ CL(X × 

Y ) such that | F | for every isolated point x ∈ X. 

Proof. By Proposition 6 and Remark 21, in both cases the conditions on F are necessary. 

By Corollary 20 it suffices to show that F belongs to the closure of C(X, Y ) in the upper Fell topology. Assume 

that F ∈ W +, where W c is a compact subset of X × Y . 

• Suppose Y is compact. Put K = pr1 W c. For every x ∈ K choose a clopen neighbourhood Ux of x in X and a point 

yx ∈ F(x) such that Ux × { yx } ⊆ W . Since K is compact, choose an irreducible finite subcovering Ux1,..., Uxn of 

the clopen covering { Ux: x ∈ K } . Let Vi = Uxi 
\ j<i Uxj . Then { Vi: 1  i  n }∈ is a disjoint covering of∩ K 

consisting of non-empty clopen sets. If y denotes any point of Y , the required function f C(X, Y ) W + is defined 

by 
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fyxi if x ∈ Vi, y if x ∈ X \  

V : 1  i  n }. 

• If Y is not compact, choose any y ∈ (Y \ pr2 W c). Then the required function in C(X, Y ) ∩ W + is the constant 

function g  

Theorem 23. Let X be a locally compact topological space. The following conditions are equivalent: 

(i) X is zero-dimensional. 

(ii) For every compact space Y , the closure of C(X, Y ) in CL(X × Y ) with the Fell topology consists of all F ∈ 

CL∗(X × Y ) which map isolated points into singletons. 

(iii) The closure of C(X, [0,1] ) in CL(X × [ 0,1] ) with the Fell topology consists of all F ∈ CL∗(X × [ 0,1] ) which 

map isolated points into singletons. 

(iv) The closure of C(X, {0,1}) in CL(X × {0,1}) with the Fell topology consists of all F ∈ CL∗(X × {0,1}) which 

map isolated points into singletons. 

Proof. Theorem 22 shows that it suffices to prove (iii) ⇒ (i) and (iv) ⇒ (i). 

 
Let p denote a non-isolated point and take an open neighbourhood U of p such that U is compact. We are going 

to prove that U contains a clopen neighbourhood of p. 

 
Choose an open neighbourhood V of p such that V ⊆ U and consider the following multivalued function 

F . 

 
Since V \ V contains no isolated points, the multivalued function F maps isolated points into singletons. Notice that 

F may be viewed as an element both of CL∗(X × [0,1] ) and of CL∗(X × {0,1}). 

 (iii) ⇒ (i). Choose a positive real number  and consider the following compact subset of X ×[0,1] 

K . 

(Kc)+ is a Fell-neighbourhood of F. Consequently there exists f ∈ (Kc)+ ∩ C(X, [0,1] ). Put Z. Then 

Notice that. Obviously Z is an open set. It 

is also closed because\=\∪: 

(i). Consider the following compact subset of X ×{0,1} : 

L . 

Since (Lc)+ is a Fell-neighbourhood of F, there exists f ∈ (Lc)+ ∩ C(X, {0,1}). The set Zis 

an open neighbourhood of p. Since X \ Z = , it follows that Z is also 

closed. 

On minimal usco maps 

Let H ⊆ CL∗(X × Y ) denote the set of usco maps. A standard application of Zorn’s lemma ensures that, if H is 

ordered by set inclusion, then every F ∈ H contains a minimal element G ∈ H. The set of minimal elements of H is 

denoted by 

M(X, Y ). Each element of M(X, Y ) is called a minimal usco 

map. The following statement is analogous to Lemmas 7 and 

19. 

Lemma 24. Let X be a regular space and let Y be a Hausdorff space. Let W be an open subset of X × Y such that W 

. If W1,..., Wn are non-empty open subsets of W such that pr1(Wi) ∩ pr1(W j) = ∅ whenever i = j, then 

M(X, Y ) ∩ W + ∩  = ∅ . 

Proof. . For every i ∈ {1,...,n } .  
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choose an open set Ui ⊆ X and a point yi ∈ Y such that Ui ×{ yi }⊆ Wiand Ui ∩ U j =∅ if i = j. Consider the 

multifunction L ∈ CL∗(X × Y ) defined as follows: 

  

∈i;  L is a minimal usco map,We denote by D(X, Y ) ⊆ CL(X × Y ) the set consisting of the 

elements of the form f  C( f ), where f is a single valued function which is continuous at every point x of a dense 

subset C( f ) [7,10]. 

 

 

 

 

 

 

 

 

 

Consider the subset DFin(X × Y ) of CL∗(X × Y ) consisting of multivalued functions of the form 

n 

G  

i=1 

of where X. One can easily show that DFinyi are elements of Y and Vi(are open subsets ofX × Y ) ⊆ M(X, Y ) ∩ 

DX(Xsuch that, Y ).Vi ∩ V j = ∅ for i = j and ni=1 Vi is a dense subset 

Remark 25. In the proof of Lemma 24, assume that F ∈ DFin(X × Y ). Then the minimal usco map G belongs to 

DFin(X × Y ). 

Remark 26. Let x ∈ X be an isolated point. If G ∈ M(X, Y ), then | G(x)| = 1. Consequently, if F belongs to the 

closure of M(X, Y ) in the lower Vietoris topology, then | F  | 1  

(see Proposition 6). 

Lemmas 5 and 24 and Remark 25 imply the following: 

Corollary 27. Let X be a regular topological space and let Y be a Hausdorff space. Let F ∈ CL(X × Y ) such that | 

F  | for every isolated point x ∈ X. If F belongs to the closure of DFin(X × Y ) in the upper Fell topology, then 

F belongs to the closure of DFin(X × Y ) in the Fell topology. 

Theorem 28. Let X be a regular topological space and let Y be a Hausdorff space. The closure of DFin(X × Y ) in 

the Fell topology of CL(X × Y ) coincides with the set E described in the following cases: 

F ∈ CL∗(1 if x is an isolated point. • if Y is compact, then E consists of all 

• if Y fails to be compact, then E consists of all F × | F

 | if x is an isolated point. 

Proof. In both cases, by Remarks 26 and 21, the conditions on E are required. 

Choose a non-empty open subset W of X × Y such that W c is compact. 

• Suppose that Y is compact and that W + contains an element F ∈ CL∗(X × Y ) such that | F(x)| = 1 for each 

isolated point x ∈ X. Let K = pr1(W c). For every x ∈ K take an open neighbourhood Ux of x in X and a point yx ∈ 

F(x) such that Ux × { yx } ⊆ W . Since K is compact, choose an irreducible finite subcover Ux1,..., Uxn of the open 

cover { Ux: x ∈ K } . 

 Let us set Vi = Uxi \ ji Uxj and V  Vi. Choose an arbitrary element y0 ∈ Y and define 

n 

G . 

L ( x ) = 

⎧ 
⎨ 

⎩ 

{ y i } if x U 

{ y i } ∪ F ( x ) if x ∈ ( U i \ U i ) ; 

F ( x ) if x / ∈  
n 
i = 1 U i 

By Proposition 1, L ∈ CL 
∗ 
( X × Y ) . Clearly L is an usco map belonging to W 

then G ∈ W 
+ ∩  

n 
i = 1 W 

− 
i because G ( U i ) { = y i } .  
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i=0 

Then G belongs to DFin(X × Y ) ∩ W +. By Corollary 27 the element F belongs to the closure of E in the Fell 

topology. 

• Suppose that Y fails to be compact and choose y ∈/ pr2(W c). Then X × { y } belongs to W + and consequently 

DFin(X × Y ) is dense in CL(X × Y ) with the upper Fell topology. The conclusion follows by applying Corollary 

27.  
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