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ABSTRACT 

The optimization of multi-objective problems is currently an important area of research and development. The importance 

gained by this type of problem has given rise to the development of multi-objective metaheuristics to attain solutions for such 

problems. In this paper, an experimental comparison of MOEA/D (Multiobjective Evolutionary Algorithm based on 

Decomposition), NSGA II (Nondominated Sorting Genetic Algorithm II), and SPEA2 (Strength Pareto Evolutionary Algorithm 

2) using ZDT benchmark, has been done to determine which multi-objective metaheuristic has the best performance with 

respect to a problem. The results thus obtained are compared and analyzed based on three performance metrics namely Hyper 

volume, GD, and IGD that evaluate the dispersion of the solutions and its proximity to it. 

Keywords: — Multiobjective optimization; Multiobjective evolutionary algorithm based on Decomposition, Nondominated 

sorting genetic algorithm-II; Strength pareto evolutionary algorithm2. 

I.     INTRODUCTION 

Many real-world decision making problems need to achieve 

several objectives such as minimized risks, maximized 

reliability, minimized deviations from desired levels, and 

minimized cost etc. The main goal of single-objective (SO) 

optimization is to find the “best” solution, which corresponds 

to the minimum or maximum value of a single objective 

function that lumps all different objectives into one. This type 

of optimization is useful as a tool that provides decision 

makers the insights into the nature of the problem, but usually 

lacks to provide a set of alternative solutions that have trade-

off among different objectives against each other. On the 

contrary, in a multi-objective optimization with conflicting 

objectives, there is no single optimal solution (Rajani et al 

2017). The interaction among different objectives gives rise to 

a set of compromised solutions, largely known as the trade-off, 

non-dominated, non-inferior or Pareto-optimal solutions 

(Savic, 2002). 

Optimization is used to find out one or more feasible 

solutions that give(s) the best value(s) for one or more 

objectives of some function. When only one objective 

function is involved in the optimization problem, the task of 

finding the best possible solution is called single objective 

optimization as shown in figure 1(a). On the other hand, when 

more than one objective function are involved in the 

optimization problem, the task of finding one or more best  

 

 

 

 

possible solution(s) is known as multi-objective optimization 

as shown in figure 1(b) (Bandyopadhyay and Saha, 2013). 

 

Figure 1 (a)     Single objective problem formulation and     (b) 

Multi-objective problem formulation  

 

 

 

 

 

 

 

 

 

 

 

The task of simultaneously optimizing more than one 

conflicting objectives with respect to a set of certain 
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constraints is dealt with the help of multi-objective 

optimization. In multi-objective optimization problem, if 

optimization of one objective automatically leads to 

optimization of another objective, then this kind of problem is 

not considered as a multi-objective optimization problem. 

However, in many real-life situations we come across 

problems where an attempt to improve one objective leads to 

degradation of the other objective. Such problems belong to 

the class of multi-objective optimization problems (Deb, 

2014). 

 Mathematically, the multi-objective problem could be 

written as follows: 

Maximize/minimize

          

(1) 

Subject to 

constraints:

           (2) 

                                  

         

(3) 

                                 

(4) 

where parameter  is an dimensional vector with design 

or decision variables,  . The constraints 

in equation (4) are called variables bound, that restrict each 

decision variable  to take a value within a lower   and 

an upper   bound. These bounds make up a decision 

space, . A solution  that satisfies all the  

constraints and all the  variable bounds is called a feasible 

solution otherwise it is known as an infeasible solution. The 

set of all feasible solutions is called the feasible region or 

search space, (Deb, 2014). 

 Given two vectors  (where  is the decision 

space), the vector  is said to dominate , , iff  is 

not worse than  in any objective function and it is strictly 

better in at least one objective function (Deb, 2014). If neither 

 dominates , nor   dominates ,  and  are said to be 

no-comparable, denoted as . 

 For a given MOP, the Pareto optimal set  is the set 

containing all the solutions that are non-dominated with 

respect to  . It can be denoted as (Veldhuizen and 

Veldhuizen, 1999): 

 
Then, for a given MOP and its corresponding Pareto optimal 

set ), the Pareto optimal front  is the result of 

mapping  to  (where  is the objective space). is 

defined as (Veldhuizen and Veldhuizen, 1999): 

 

where  is the vector function containing  objective 

function.  

An approximation set is defined by Zitzler et al. as 

follows (Zitzler et al., 2003): let   be a set of objective 

vectors.  is called an approximation set if any element of  

does not dominate or is not equal to any other objective vector 

in . The set of all approximation sets is denoted as . 

 The rest of the paper is organized as follows: Section 2 

introduces brief review of multi-objective optimization 

algorithms. Section 3 talks about the basics of three multi-

objective optimization techniques i.e. MOEA/D, NSGA II, 

and SPEA2. Section 4 covers experimentation, results and 

discussion. Section 5 concludes the work. 

II. REVIEW OF ALGORITHMIC CONCEPTS 

OF MOEA/D, NSGA II, AND SPEA2 

Optimimizing multiple objectives in a problem is currently an 

important area of research and development. Recently, 

researchers focused on development of multiple 

metaheuristics for solving multi-objective problems. The 

following section gives the review of algorithmic concepts of 

MOEA/D, NSGA II, and SPEA2. 

2.1 MOEA/D (Multiobjective Evolutionary Algorithm based 

on Decomposition) 

 

MOEA/D (Zhang and Li 2007) explicitly decomposes the 

MOP into scalar optimization sub problems. It solves these 

sub problems simultaneously by evolving a population of 

solutions. At each generation, the population is composed of 

the best solution found so far (i.e. since the start of the run of 

the algorithm) for each subproblem. The neighborhood 

relations among these subproblems are defined based on the 

distances between their aggregation coefficient vectors. The 

optimal solutions to two neighboring subproblems should be 

very similar. Each subproblem (i.e., scalar aggregation 

function) is optimized in MOEA/D by using information only 

from its neighboring subproblems. 
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2.2  NSGA-II (Nondominated Sorting Genetic Algorithm 

II) 

 

The multi-objective evolutionary algorithms (MOEA) 

suffered lots of drawbacks such as: 1. Computational 

complexity  where  is the number of objective 

and  is the population size to . 2. Non-elitism 

approach and 3. Need for specifying a sharing parameter. To 

overcome these difficulties, K. Deb et al. (2002) proposed an 

elitist non-dominated Sorting GA (NSGA-II).  In NSGA-II, 

the parent population is used to create the offspring (child) 

population . To ensure a better spread among the solution, a 

niching strategy is used to choose the diverse set of solution 

from the set (i.e. parent population + offspring population) 

followed by crowded tournament selection, crossover and 

mutation operator (Rajani et al 2017).  

2.3 SPEA2 (Strength Pareto Evolutionary Algorithm 2) 

 

SPEA2 (Zitzler, Laumanns, and Thiele 2001) is an extension 

of SPEA (Strength Pareto Evolutionary Algorithm) (Zitzler 

and Thiele 1999) that resolves the following weakness of 

SPEA i.e. 1) Fitness assignment, 2) Density estimation, 3) 

Archive truncation. SPEA uses a regular population and an 

archive (external set). Starting with an initial population and 

an empty archive the following steps are performed per 

iteration. First, all nondominated population members are 

copied to the archive; any dominated individuals or duplicates 

(regarding the objective values) are removed from the archive 

during this update operation. If the size of the updated archive 

exceeds a predefined limit, further archive members are 

deleted by a clustering technique which preserves the 

characteristics of the nondominated front. Afterwards, fitness 

values are assigned to both archive and population members. 

III. EXPERIMENTATION and Result Discussion 

3.1  Benchmark Functions Used 

 

The definition of the benchmark functions used for 

experimentation is as follows (Table 1): 

Table 1       Constraint Benchmark Functions 
ZDT1 

 

 

Where  is 

 
 

ZDT2 

 

 

Where  is 

 

ZDT3 

 

 

Where  is 

 

ZDT4 

 

 

Where  is 

 

ZDT6 

 

 

Where   is 

 
 

 

 

 

3.2  Parameter Setting for Involved Algorithms 

 

The following table indicates the parameter settings for the 

three algorithms. 

Table 2         Parameter Settings for NSGA II, MOEA/D, and 

SPEA2 

 Population Mutation Crossover 

NSGA II 

80 0.6 0.9 

100 0.6 0.9 

120 0.6 0.9 

MOEA/D 

80 0.5 - 

100 0.5 - 

120 0.5          - 

SPEA2 

80 0.9 - 

100 0.9 - 

120 0.9 - 

 

 

3.3  Performance Metrics 
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For the performance measure, as many as three different 

performance metrics namely, Hypervolume, Generational 

Distance (GD), and Inverted Generational Distance (IGD) 

have been used (Rajani et al 2017). These are defined as: 

 The Hypervolume (HV) (Auger et al, 2009), also known 

as S metric, hyper-area or Lebesgue measure, is a unary 

metric that measures the size of the objective space covered 

by an approximation set. HV considers all three aspects: 

accuracy, diversity and cardinality, being the only unary 

metric with this capability. An algorithm with a large value of 

HV is desirable. Hypervolume is calculated as: 

 

 
 Generational Distance (GD) (Riquelme et al, 2015) takes 

as reference an approximation set  and calculates how far it 

is from the Pareto optimal front  (or reference set ). 

This unary measure considers the average Euclidean distance 

between the members of  and the nearest member of . 

It can be noticed that GD considers only one aspect of : the 

accuracy. An algorithm having a small value of GD is better. 

It is calculated as: 

 
 Inverted Generational Distance (IGD) (Riquelme et al, 

2015) is an inverted variation of GD but it is significantly 

different from GD: i) it calculates the minimum Euclidean 

distance (instead of the average distance) between an 

approximation set  and the Pareto optimal front , ii) 

IGD uses as reference the solutions in  (and not the 

solutions in ) to calculate the distance between the two sets 

and iii) if sufficient members of  are known, IGD could 

measure both the diversity and the convergence of . It is 

calculated as: 

 

where  is the number of true pareto optimal solutions and  

indicates the Euclidean distance between the ith true pareto 

optimal solution and the closest obtained pareto optimal 

solutions in the reference set. 

 

3.4  Results and Discussion 

 

The above performance metrics allow us to quantitatively 

compare MOEA/D, NSGA II, and SPEA2. All the algorithms 

are run 20 times on the test problems and the statistics results 

of these 20 runs are provided in Tables 3-11.  

The comparison of the results over five multi-objective test 

functions i.e. ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 for three 

algorithms namely MOEA/D, NSGA II, and SPEA2 is given 

in table below: 

 

Population 80: 

Table 3 provides statistical results of the algorithms for 

Hypervolume (HV) on population 80. Since HV is the metric 

that considers accuracy and diversity of an algorithm. This 

table shows that MOEA/D algorithm outperforms others on 

statistical metric mean for ZDT1, ZDT2, ZDT4 and ZDT6. 

For ZDT3, NSGA II outperforms MOEA/D and SPEA 2 in 

terms of mean. MOEA/D also outperforms others in terms of 

statistical metric standard deviation.  

Table 3 Statistical results for Hypervolume on Population 80 

on ZDT benchmark 

  MOEA/

D 

                  NSGA II SPEA2 

 Mean Std. 

Dev. 

 Mean Std. Dev. Mean Std. 

Dev. 

ZDT

1 

6.61E-

01 

1.30E-

04 

 6.59E-

01 

3.19E-03 6.60 

E-01 

3.45E-

04 

ZDT

2 

3.27 

E-01 

1.02 E-

04 

 3.26E-

01 

2.46E-03 3.26 

E-01 

2.39E-

03 

ZDT

3 

5.13 

E-01 

5.30E-

05 

 5.15E-

01 

1.80E-04 5.14 

E-01 

3.20E-

04 

ZDT

4 

6.60 

E-01 

2.57 E-

04 

 6.59E-

01 

3.52E-03 6.49 

E-01 

1.52E-

02 

ZDT

6 

4.00 

E-01 

5.76E-

08 

 3.98E-

01 

1.00E-03 3.81 

E-01 

2.22E-

03 

Table 4 Statistical results for GD on Population 80 on ZDT 

benchmark 

   MOEA

/D 

NSGA II SPEA2 

  Mean Std. 

Dev. 

 Mea

n 

Std. Dev. Mean Std. 

Dev. 

ZD

T1 

 1.15

E-04 

1.35E

-05 

 8.44

E-04 

1.07E-04 2.11E

-04 

2.52E-

05 

ZD

T2 

 5.90

E-05 

2.42E

-06 

 8.24

E-04 

6.00E-05 1.53E

-04 

3.53E-

05 

ZD

T3 

 1.00

E-04 

2.75E

-06 

 5.62

E-04 

4.12E-05 1.37E

-04 

1.77E-

05 

ZD

T4 

 1.02

E-04 

1.22E

-05 

 8.61

E-04 

8.96E-05 5.76E

-04 

3.03E-

04 

ZD

T6 

 4.99

E-05 

3.96E

-07 

 7.84

E-04 

4.96E-05 1.46E

-03 

1.82E-

04 
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Table 5 Statistical results for IGD on Population 80 on ZDT 

benchmark 

  MOE

A/D 

NSGA II SPEA

2 

 Mea

n 

Std. 

Dev. 

 Mea

n 

Std. 

Dev. 

   

Mea

n 

 Std. 

Dev. 

ZD

T1 

1.99

E-

04 

6.37

E-07 

 8.47

E-

04 

8.80E-05 1.49

E-04 

3.81

E-06 

ZD

T2 

1.76

E-

04 

4.95

E-08 

 8.20

E-

04 

5.73E-05 2.21

E-04 

3.07

E-04 

ZD

T3 

3.37

E-

04 

1.72

E-06 

 5.64

E-

04 

3.30E-05 1.23

E-04 

6.04

E-06 

ZD

T4 

2.06

E-

04 

1.28

E-06 

 8.61

E-

04 

7.52E-05 9.36

E-04 

1.64

E-03 

ZD

T6 

1.75

E-

04 

5.76

E-09 

 7.79

E-

04 

5.76E-05 4.70

E-04 

4.70

E-05 

 

The statistical results of the algorithms on ZDT benchmark for 

GD are shown in Table 4. It has been observed from the table 

that for statistical metric mean, NSGA II has the better results 

than others except on ZDT4. For ZDT4, SPEA2 has 

maximum value for mean. GD is the performance metric that 

shows the accuracy of an algorithm. So it can be stated that 

NSGA II algorithm is superior except for ZDT4. For statistical 

metric standard deviation, MOEA/D outperform better than 

others.  

Table 5 shows the statistical results of the algorithms on ZDT 

benchmark functions for IGD. It has been observed from the 

table that NSGA II has better results for ZDT1, ZDT2, ZDT3 

and ZDT6. For ZDT4, SPEA2 has good results for mean. It 

has also been observed that for statistical metric standard 

deviation, MOEA/D again outperform better than others. 

 

Population 100: 

The statistical results of MOEA/D, NSGA II, and SPEA2 on 

ZDT benchmark on population 100 for GD, IGD and 

Hypervolume are shown in Tables 6-8. 

The statistical results of NSGA II, Abyss and OMOPSO on 

ZDT benchmark on population 100 for hypervolume metric is 

shown in Table 6. According to this, MOEA/D outperforms 

others for statistical metrics mean except for ZDT3. For ZDT3, 

NSGA II has greater value for mean. For statistical metric 

standard deviation, MOEA/D dominates others. It 

demonstrates the supremacy of MOEA/D algorithm. 

The statistical results of MOEA/D, NSGA II, and SPEA2 on 

ZDT benchmark on population 100 for GD metric is shown in 

Table 7. According to this, NSGA II outperforms others on 

ZDT1, ZDT2, ZDT3, and ZDT4. For ZDT6, SPEA2 

outperforms others. Again for statistical metric standard 

deviation, MOEA/D has best values. 

Table 6 Statistical results for Hypervolume on Population 100 

on ZDT benchmark 

  MOE

A/D 

NSGA II SPEA2 

 Mea

n 

Std. 

Dev. 

 Mean Std. Dev. Mean Std. 

Dev. 

ZD

T1 

6.61

E-01 

1.11

E-04 

 6.60

E-01 

1.34E-03 6.60E

-01 

3.30E

-04 

ZD

T2 

3.28

E-01 

1.09

E-04 

 3.27

E-01 

1.45E-03 3.26E

-01 

5.81E

-04 

ZD

T3 

5.14

E-01 

4.41

E-05 

 5.15

E-01 

1.03E-03 5.14E

-01 

2.18E

-04 

ZD

T4 

6.61

E-01 

9.76

E-05 

 6.60

E-01 

5.53E-03 6.50E

-01 

8.61E

-03 

ZD

T6 

4.01

E-01 

5.40

E-08 

 3.99

E-01 

2.14E-03 3.79E

-01 

2.28E

-03 

 

Table 7 Statistical results for GD on Population 100 on ZDT 

benchmark 

  MOE

A/D 

NSGA II SPEA2 

 Mea

n 

Std. 

Dev. 

 Mea

n 

Std. Dev. Mean Std. 

Dev. 

ZD

T1 

8.89

E-05 

1.15

E-05 

 6.19

E-04 

4.60E-05 2.24E

-04 

2.07E

-05 

ZD

T2 

5.08

E-05 

4.79

E-06 

 5.92

E-04 

3.15E-05 1.89E

-04 

4.36E

-05 

ZD

T3 

9.17

E-05 

2.72

E-06 

 4.22

E-04 

2.66E-05 1.42E

-04 

1.32E

-05 

ZD

T4 

7.25

E-05 

1.15

E-05 

 6.88

E-04 

1.03E-04 6.41E

-04 

3.97E

-04 

ZD

T6 

4.16

E-05 

3.46

E-07 

 5.89

E-04 

3.79E-05 1.61E

-03 

1.68E

-04 

 

Table 8 Statistical results for IGD on Population 100 on ZDT 

benchmark 

  MOEA NSGA II SPEA2 
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/D 

 Mean Std. 

Dev. 

 Mean Std. Dev.    

Mean 

 Std. 

Dev. 

ZD

T1 

1.60E

-04 

6.69E

-07 

 6.19E

-04 

5.56E-05 1.53E-

04 

3.60E-

06 

ZD

T2 

1.41E

-04 

1.60E

-07 

 5.91E

-04 

3.16E-05 1.57E-

04 

7.64E-

06 

ZD

T3 

2.83E

-04 

1.67E

-06 

 4.18E

-04 

2.09E-05 1.25E-

04 

6.29E-

06 

ZD

T4 

1.68E

-04 

2.19E

-06 

 6.86E

-04 

1.07E-04 9.23E-

04 

9.81E-

04 

ZD

T6 

1.40E

-04 

4.58E

-09 

 5.83E

-04 

4.41E-05 5.15E-

04 

5.00E-

05 

 

The statistical results of MOEA/D, NSGA II, and SPEA2 on 

ZDT benchmark on population 100 for IGD metric is shown 

in Table 8. According to this, again NSGA II outperforms 

others except ZDT4 for mean. For ZDT4, SPEA2 has 

maximum value for mean. Again for statistical metric 

standard deviation, MOEA/D dominates others. 

 

Population 120: 

The statistical results of MOEA/D, NSGA II, and SPEA2 on 

ZDT benchmark on population 120 for GD, IGD and 

Hypervolume metric are shown in table 9-11. 

The statistical results of MOEA/D, NSGA II, and SPEA2 

on ZDT benchmark on population 120 for Hypervolume 

metric is shown in Table 9. According to this, MOEA/D 

outperforms others in terms of mean and standard deviation 

except ZDT3. For ZDT3, NSGA II has the maximum value 

for mean. 

Table 10 shows the statistical results of MOEA/D, NSGA 

II, and SPEA2 on ZDT benchmark on population 120 for GD 

metric. According to this, NSGA II outperforms others on 

ZDT1, ZDT2, ZDT3, and ZDT6. For ZDT4, SPEA2 

outperforms others. For standard deviation, MOEA/D has best 

values. 

 

Table 9 Statistical results for Hypervolume on Population 120 

on ZDT benchmark 

  MOEA/

D 

NSGA II SPEA2 

 Mean Std. 

Dev. 

 Mean Std. Dev. Mean Std. 

Dev. 

ZDT

1 

6.62E-

01 

1.75E-

04 

 6.61E

-01 

1.20E-03 6.60E-

01 

2.84E-

04 

ZDT

2 

3.29E-

01 

8.51E-

05 

 3.28E

-01 

4.54E-04 3.23E-

01 

1.16E-

02 

ZDT

3 

5.14E-

01 

3.64E-

05 

 5.16E

-01 

3.19E-04 5.14E-

01 

3.66E-

04 

ZDT

4 

6.62E-

01 

9.90E-

05 

 6.61E

-01 

5.18E-03 6.52E-

01 

6.41E-

03 

ZDT

6 

4.02E-

01 

2.30E-

07 

 4.00E

-01 

3.58E-03 3.74E-

01 

2.65E-

03 

 

Table 10 Statistical results for GD on Population 120 on ZDT 

benchmark 

  MOEA/

D 

NSGA II SPEA2 

 Mean Std. 

Dev. 

 Mean Std. Dev. Mean Std. 

Dev. 

ZDT

1 

8.03E-

05 

1.16E-

05 

 4.52E-

04 

1.61E-05 2.43E-

04 

2.45E-

05 

ZDT

2 

5.15E-

05 

2.90E-

06 

 4.55E-

04 

2.07E-05 2.21E-

04 

6.20E-

05 

ZDT

3 

8.60E-

05 

2.79E-

06 

 3.24E-

04 

2.18E-05 1.46E-

04 

1.67E-

05 

ZDT

4 

6.74E-

05 

9.57E-

06 

 5.81E-

04 

1.67E-04 5.89E-

04 

3.40E-

04 

ZDT

6 

3.81E-

05 

1.51E-

07 

 5.04E-

05 

5.04E-05 2.02E-

03 

1.96E-

04 

 

 

Table 11 Statistical results for IGD on Population 120 on 

ZDT benchmark 

  MOEA

/D 

NSGA II SPEA

2 

 Mea

n 

Std. 

Dev. 

 Mea

n 

Std. 

Dev. 

   

Mea

n 

 Std. 

Dev. 

ZD

T1 

1.34

E-

04 

8.98E-

07 

 4.57

E-

04 

2.37E-05 1.55

E-04 

2.76

E-06 

ZD

T2 

1.17

E-

04 

1.54E-

07 

 4.55

E-

04 

2.82E-05 3.89

E-04 

1.02

E-03 

ZD

T3 

2.30

E-

04 

1.11E-

06 

 3.26

E-

04 

1.73E-05 1.24

E-04 

7.31

E-06 

ZD

T4 

1.40

E-

04 

2.13E-

06 

 5.80

E-

04 

1.66E-04 6.20

E-04 

7.36

E-04 

ZD

T6 

1.16

E-

04 

6.89E-

09 

 5.05

E-

04 

5.32E-05 6.36

E-04 

5.89

E-05 
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Table 11 shows the statistical results of MOEA/D, NSGA II, 

and SPEA2 on ZDT benchmark on population 120 for IGD 

metric. According to this, NSGA II outperforms others on 

ZDT1, ZDT2 and ZDT3. For ZDT4 and ZDT6, SPEA2 

outperforms others. Again for standard deviation, MOEA/D 

has best values. 

IV. CONCLUSIONS 

In this paper, we have performed an experimental comparison 

among three algorithms for multi-objective optimization. To 

evaluate the performance of the algorithms we have used five 

well-known benchmark problems (ZDT) by three unary 

metrics i.e. Hypervolume, GD, IGD. According to 

experiments with test functions examined and the parameter 

settings used, we can conclude that for Hypervolume metric 

MOEA/D yields the best performance in terms of mean on 

population 80,100 and 120. For GD and IGD metric, 

MOEA/D yields best results for standard deviation and NSGA 

II yields best results for mean on population 80,100 and 120.  
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