OPEN ACCESS

Prediction Of Flexural Strength Of Ternary Blended Snail Shell Ash – Palm Bunch Ash Concrete Beams Using Scheffe's Simplex Method

P. O. Dike ^[1], P. E. Ahiwe ^[2]

Department of Civil Engineering Federal University of Technology Owerri Imo State – Nigeria

ABSTRACT

This study focused on the Development of mathematical model for the prediction of flexural strength of ternary blended Snail Shell Ash – Palm Bunch Ash Concrete beams using Scheffe's simplex method. A total of one hundred and twenty six (126) beams were cast, consisting of three beams per mix ratio and for a total of forty two (42) mix ratio. The first twenty one (21) mixes were used to develop the model, while the other twenty one were used to validate the model. The computer program was written for Scheffe's model, using VISUAL BASIC 6.0. The written program was used to predict the flexural strength for a given mix ratio and vice-versa. The mathematical model results compared favourably with the experimental data. The model predictions was tested for adequacy at 95% confidence level using statistical t – Test and was found adequate. The optimum flexural strength of the blended concrete at twenty eight (28) days was found to be 6.129N/mm2 and the corresponding mix ratio is as follows: Water = 0.565, Cement = 0.865, Snail Shell Ash= 0.075, Palm Bunch Ash = 0.06, Sand = 1.87, Granite = 3.62. The study proved that Snail Shell Ash – Palm Bunch Ash can be used effectively as pozzolanic cementitious materials in concrete.

Keywords:- Blended Cement, Flexural Strength, Concrete, Snail Shell Ash, Palm Bunch Ash, Mathematical Model, Scheffe's Model.

I. INTRODUCTION

Construction works and Civil Engineering practice today depend, to a very large extent, on concrete as major construction material. The basic constituents of concrete are cement, fine aggregate (sand), coarse aggregate and water. The versatility, strength and durability of cement are of utmost priority over other construction materials. The cost of concrete production is relatively high due to the manufacture of its main constituent Ordinary Portland Cement (Waithaka, 2014).

Many researchers in material science and engineering, in recent time, are committed to utilizing agricultural or industrial wastes to either partially or fully replace conventional materials of concrete. The incorporation of agricultural byproduct pozzolans has been studied with positive results in the manufacture and application of blended cements (Malhotra and Mehta, 2004).

Recent investigation on the use of palm bunch ash (Ettu *et al.*, 2013) and snail shell ash (Zaid and Ghorpade, 2014) have shown that they are good supplementary cementitious materials as they are amorphous in nature and has good pozzolanic properties.

The use of these materials as cement supplements is much more important in developing countries to augment the shortage of construction materials as well as in the development of low-cost construction materials that will be environmental friendly.(Singh *et al.*, 2007; Umoh and Olusola, 2012).

Intensified local economic ventures in many Nigerian communities have led to increased agricultural and plant wastes such as snail shell and oil palm bunch. Snail Shell is a waste product which is obtained from the consumption of a small greenish-blue marine snail, which rests in a V shaped spiral shell, found in many coastal regions. These shells are a very strong, hard and brittle material. These snails are found in the lagoons and mudflats of the coastal areas and large deposits have accumulated in many places over the years. Also large quantities of oil palm bunch are generated in local palm oil mills scattered in various communities all over South Eastern Nigeria. Their utilization as pozzolanic material would both reduce the problem of solid waste management (Elinwa and Ejeh, 2004) and add commercial value to the otherwise waste product. It is with this view that this experimental study seeks to investigate into the suitability of snail shell

ash and palm bunch as Partial Replacement for Ordinary Portland Cement in Concrete and also to develop a mathematical model that will ease the prediction of flexural strength from the mix ratio of the blended cement and vice versa.

II. MATERIALS

Cement

The cement used in this research work was Dangote brand of ordinary Portland cement. It conforms to the requirements of BS 12:1978. It was obtained from Dangote cement depot along FUTO – Obinze road, Owerri, Imo State and stored in dry place prior to usage.

Aggregate

The aggregates used in this work were of two sets:

i. Fine aggregate

The fine aggregates used in the investigation are of locally available and was obtained from a flowing river (Otamiri River) but was purchased at the aggregate market km 1, Aba road Owerri, Imo State. It was washed and sun dried for seven days in the laboratory and free from organic matter before usage. The river-bed sand passing 4.75mm sieve was used.

Coarse Aggregates

The coarse aggregates used for this research work are of angular shape crushed granite aggregate and are confined to 20 mm size with specific gravity of 2.65. They were obtained from the Abakaliki Quarry Site, but purchased at the aggregate market km1, Aba Road Owerri, Imo State. They were washed and sun dried for seven days in the laboratory to ensure that they were free from excessive dust, and organic matter.

Water

Water used for this research work was obtained from a borehole within the premises of Federal University of Technology Owerri, Imo State.

Snail shell ash

To carry out the experimental study, the Snail Shells were collected from local markets in Owerri district of Imo State, Nigeria. All the shells were washed and sun dried in the laboratory for two weeks and made free from any organic and inorganic matter. The shells were calcined in a furnace and stopped as soon as the temperature reaches 800°C. Then, the ash was ground to fine powder and sieved with 150µm size. This powder is thus called as Snail Shell Ash (SSA)

Palm bunch ash

Oil palm bunch was obtained from palm-oil milling factories in Owerri district of Imo State, Nigeria, crushed into smaller particles, air-dried, and calcined into ashes in a locally fabricated combustion chamber at temperatures generally below 650°C. The yield of ash on combustion was found out to be about 30%. The total quantity of palm bunch ash needed for the research was about 40kg. Therefore, 200kg of palm bunch was burnt in the combustion chamber to produce a total of about 60 kg of palm bunch ash and the extra amount was used to account for losses in the course of the experiment.

The temperature of operation of the kiln ranged between 300°C and 600°CThe ash was sieved and large particles retained on the $150\mu m$ sieve were discarded while those passing the sieve were used for this work. No grinding or any special treatment to improve the ash quality and enhance its pozzolanicity was applied

III. METHODS MODELLING AND OPTIMIZATION

The use of simplex design and the regression in the formulation of concrete design models will be considered in details in this work. In this research, however, the Scheffe's method of optimization will be used in the modeling and optimization.

IV. SCHEFFE'S OPTIMIZATION MODEL

In this work, Henry Scheffe's optimization method was used to develop models that will predict possible mix proportions of concrete components that will produce a desired compressive strength by the aid of a computer programme. Achieving a desired flexural strength of concrete is dependent to a large extent, on the adequate proportioning of the components of the concrete. In Scheffe's work, the desired property of the various mix ratios, depended on the proportion of the components present, and but not on the quality of mixture.

Therefore, if a mixture has a total of q components/ ingredients of the i^{th} component of the mixture,

$$X_i \ge 0 \ (i = 1, 2, 3, ..., q)$$
 (3.1*a*)

Where Xi = ... for the ith component of the mixture and assuming the mixture to be a unit quantity, then the sum of all proportions of the component must be unity. That is,

$$X_1 + X_2 + X_3 + \dots + X_{q-1} + X_q = 1$$

This implies that

This implies that

$$\sum_{i=1}^{n} X_i = 1$$
 (3.2)

Combining Eqn (3.1a) and (3.2), implies that:

 $0 = \leq X_i \leq 1(3.3)$

The factor space therefore is a regular (q-1) dimensional simplex.

V. SCHEFFE'S SIMPLEX LATTICE

A factor space is a one-dimensional (a line), a two-dimensional (a plane), a three – dimensional (a tetrahedron) or any other imaginary space where mixture component interact. The boundary within which the mixture components interact is defined by the space.

Scheffe (1958) stated that (q-1) space would be used to define the boundary where q components are interacting in a mixture. In other words, a mixture comprising of q components can be analyzed using a (q-1) space

Interaction of Components in Scheffe's Factor Space

The components of a mixture are always interacting with each other within the factor space. Three regions exist in the factor space. These regions are the vertices, borderlines, inside body space. Pure components of the mixture exist at the vertices of the factor spaces. The border line can be a line for one-dimensional or two – dimensional factor space. It can also be both lines and plane for a three – dimensional, four – dimensional, etc. factor spaces. Two components of a mixture exist at any point on the plane border, which depends on how many vertices that defined the plane border. All the component of a mixture exists right inside the body of the space.

Also, at any point in the factor space, the total quantity of the Pseudo components must be equal to one. A two – dimensional factor space will be used to clarify the interaction components. Fig 3.1: Shows seven points on the two – dimensional factor space.

Fig 3.1: A Two – Dimensional Space Factor

The three points, A_1 , A_2 and A_3 are on the vertices. Three points A_{12} , A_{13} and A_{23} are on the border of space. One remaining of A_{123} is right inside the body of the space.

 A_1 , A_2 and A_3 are called principal co-ordinates, only one pure component exists at any of these principal coordinates, and the total quantity of the Pseudo components of these coordinates is equal to one. The other components outside these coordinates are all zero. For instance, at coordinate A_1 , only A1 exists and the quantity of its Pseudo component is equal to one. The other components are equal to zero.

 A_{12} , A_{13} and A_{23} are point or coordinates where binary mixtures occur at these points only two components exist and the rest do not. For instance, at point A_{12} , components of A_1 and A_2 exists. The total quantity of Pseudo components of A_1 and A_2 at that point, is equal to one, while component A_3 is equal to zero at that point.

If A_{12} is midway, then the component of A_1 is equal to half and that of A_2 is equal to half, while A_3 is equal to zero at that point. At any point inside the space, all the three components A_1 , A_2 and A_3 exist. The total quantity of the Pseudo component is still equal to one. Consequently, if a point A_{123} is exactly at the centroid of the space, the Pseudo component of A_1 is equal to those of A_2 , and A_2 and is equal to one – third ($\frac{1}{3}$).

VII. SIX COMPONENTS FACTOR SPACE

This research work deals with a six component concrete mixture. The components that form the concrete mixture are water/cement (w/c) ratio, cement, sawdust ash, palm bunch ash, river sand and granite. The number of components q is equal to six which is equal to five – dimensional factor space. A five-dimensional factor space is an imaginary dimension space.

The imaginary space used is shown in Fig. 3.2.

ISSN: 2393-9516

VIII. MIX RATIOS

In Scheffe's mixture design, the Pseudo components have relationship with the actual component. This means that the actual component can be derived from the Pseudo components and vice versa. According to Scheffe, Pseudo components were designated as X and the actual components were designated as S. Hence the relationship between X and S as expressed by Scheffe is given in Eqn (3.4).

$$S = A * X$$

(3.4)

where A is the Matrix connecting the relationship and the Eqn (3.4)

The six components are Water, Cement, Snail shell ash, Palm bunch ash, Sand and Granite.

Let S_1 = Water; S_2 = Cement; S_3 = Snail shell ash; S_4 = Palm bunch ash; S_5 = Sand and S_6 = Granite.

The Six mixed ratios (real and pseudo) that defined the vertices of the hexahedron simplex lattice used in this study are shown in Table 3.2.

				(Staniea i i oni S		~ (~,-)		- °P***	••	
Ν	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	Response	X1	X_2	X ₃	X_4	X5	X ₆
1	0.50	0.90	0.05	0.05	2.0	4.0	Y1	1	0	0	0	0	0
2	0.60	0.85	0.10	0.05	1.8	3.6	Y ₂	0	1	0	0	0	0
3	0.55	0.80	0.10	0.10	2.2	4.2	Y ₃	0	0	1	0	0	0
4	0.45	0.85	0.05	0.10	2.0	3.2	Y_4	0	0	0	1	0	0
5	0.65	0.95	`0.0	0.05	1.5	2.8	Y ₅	0	0	0	0	1	0
6	0.55	0.80	0.15	0.50	1.8	4.0	Y ₆	0	0	0	0	0	1

Table 3.2 First Six Mix Ratios (Actual and Pseudo) Obtained From Scheffe's (6,2) factor space.

Where: N = any point on the factor space

 $\mathbf{Y} = response$

The six actual and pseudo mix ratios in table 1 correspond to points of observations, located at the six vertices of the hexahedron. For a (6, 2) simplex design, fifteen (15) other observations are needed to add up to the first six to get a total of twenty one (21) observations. This was used to formulate the model. The remaining fifteen (15) points were located at the midpoints of the lines joining the six vertices. On substitution of these pseudo mix ratios one after the other into equation (1.3), the real mix ratios corresponding to the pseudo values were obtained. Expanding Eqn (3.4) gives Eqn (3.5).

$\begin{bmatrix} a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\ S_{5} \\ S_{6} \end{bmatrix} \begin{bmatrix} a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \end{bmatrix} \begin{bmatrix} x_{4} \\ X_{5} \\ X_{6} \end{bmatrix}$	$ \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix} $	=	$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \\ a_{51} \\ a_{61} \end{bmatrix}$	$a_{12} \\ a_{22} \\ a_{32} \\ a_{42} \\ a_{52} \\ a_{62}$	$\begin{array}{c}a_{13}a_{14}\\a_{23}a_{24}\\a_{33}a_{34}\\a_{43}a_{44}\\a_{53}a_{54}\\a_{63}a_{64}\end{array}$	$a_{15} \\ a_{25} \\ a_{35} \\ a_{45} \\ a_{55} \\ a_{65} \end{cases}$	$\begin{bmatrix} a_{16} \\ a_{26} \\ a_{36} \\ a_{46} \\ a_{56} \\ a_{66} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \end{bmatrix}$	(3.5)
--	--	---	--	--	---	--	---	-------

Assembling the coefficients of matrix A, gives:

		0.50	0.60	0.550.45	0.65	0.55	
		0.90	0.85	0.800.85	0.95	0.80	
٢۵	1 =	0.05	0.10	0.100.05	0.00	0.15	(36)
[Л	1 -	0.05	0.05	0.100.10	0.05	0.05	(3.0
		2.00	1.80	2.202.00	1.50	2.00	
		L4.00	3.60	4.203.20	2.80	4.00J	

According to Scheffe's simplex lattice, the mix ratios when shown in an imaginary space will give 21 points on the five – dimensional factor spaces. The actual components of the binary mixture (as represented by points N = 12 to N = 56), are determined by multiplying matrix [A] with values of matrix [X]. That is to say:

[S] = [A] * [X]

The pseudo components and their corresponding actual components at different points on the factor space are shown in the table below:

S/N	Values	Values of Actual Components						Value	Values of Pseudo Components				
	\mathbf{S}_1	S_2	S ₃	S_4	S ₅	S ₆	Response	X1	X ₂	X ₃	X_4	X5	X ₆
1	0.50	0.90	0.05	0.05	2	4	\mathbf{Y}_1	1	0	0	0	0	0
2	0.60	0.85	0.10	0.05	1.8	3.6	Y ₂	0	1	0	0	0	0
3	0.55	0.80	0.10	0.10	2.2	4.2	Y ₃	0	0	1	0	0	0
4	0.45	0.85	0.05	0.10	2.0	3.2	Y_4	0	0	0	1	0	0
5	0.65	0.95	0.00	0.05	1.5	2.8	Y ₅	0	0	0	0	1	0
6	0.55	0.80	0.15	0.05	1.8	4.0	Y ₆	0	0	0	0	0	1
12	0.55	0.875	0.075	0.05	1.90	3.80	Y ₁₂	0.5	0.5	0	0	0	0
13	0.525	0.850	0.075	0.075	2.10	4.10	Y ₁₃	0.5	0	0.5	0	0	0
14	0.475	0.875	0.05	0.075	2.00	3.60	Y_{14}	0.5	0	0	0.5	0	0
15	0.575	0.925	0.025	0.05	1.75	3.40	Y ₁₅	0.5	0	0	0	0.5	0
16	0.525	0.85	0.10	0.05	1.90	4.00	Y ₁₆	0.5	0	0	0	0	0.5
23	0.575	0.825	0.10	0.075	2.00	3.90	Y ₂₃	0	0.5	0.5	0	0	0
24	0.525	0.85	0.075	0.075	1.90	3.40	Y ₂₄	0	0.5	0	0.5	0	0
25	0.625	0.90	0.05	0.05	1.65	3.20	Y ₂₅	0	0.5	0	0	0.5	0
26	0.575	0.850	0.125	0.05	1.80	3.80	Y ₂₆	0	0.5	0	0	0	0.5
34	0.50	0.825	0.075	0.100	2.10	3.70	Y ₃₄	0	0	0.5	0.5	0	0
35	0.60	0.875	0.05	0.075	1.85	3.50	Y ₃₅	0	0	0.5	0	0.5	0
36	0.55	0.800	0.125	0.075	2.00	4.10	Y ₃₆	0	0	0.5	0	0	0.5
45	0.55	0.900	0.025	0.075	1.75	3.00	Y_{45}	0	0	0	0.5	0.5	0
46	0.50	0.825	0.100	0.075	1.90	3.60	Y ₄₆	0	0	0	0.5	0	0.5
56	0.60	0.875	0.075	0.05	1.65	3.40	Y ₅₆	0	0	0	0	0.5	0.5

Table 3.3 Actual and Pseudo components of the Actual Mixes

In order to validate the model, extra 21(twenty one) points (C1, C2, C3, C4, C5, C6, C12, C13, C14, C15, C16, C23, C24, C25, C26, C34, C35, C36, C45, C46 and C56) of observations were used. These observations served as control mix.

Table 3.4: Values of Actual and Pseudo components for control mixes

	Values	alues of Actual Components						Values	of Pseuc	lo Comp	onents		
Control points	S_1	S_2	S ₃	S_4	S ₅	S ₆		X_1	X_2	X ₃	X_4	X5	X ₆
C1	0.525	0.85	0.075	0.075	2.00	3.75	YC ₁	0.25	0.25	0.25	0.25	0.00	0.00
C ₂	0.538	0.875	0.05	0.075	1.925	3.55	YC ₂	0.25	0.00	0.25	0.25	0.25	0.00
C ₃	0.538	0.875	0.063	0.063	1.825	3.5	YC ₃	0.25	0.00	0.00	0.25	0.25	0.25
C ₄	0.55	0.85	0.083	0.067	2.00	3.933	YC ₄	0.333	0.333	0.333	0.001	0.000	0.000
C5	0.5	0.85	0.067	0.083	2.067	3.8	YC ₅	0.333	0.001	0.333	0.333	0.00	0.00
C ₆	0.567	0.883	0.067	0.05	1.767	3.601	YC ₆	0.333	0.00	0.001	0.00	0.333	0.333
C ₁₂	0.55	0.87	0.06	0.07	1.9	3.56	YC ₁₂	0.20	0.20	0.20	0.20	0.20	0.00
C ₁₃	0.56	0.85	0.08	0.07	1.86	3.56	YC ₁₃	0.00	0.20	0.20	0.20	0.20	0.20

International Journal of Engineering Trends and Applications (IJETA) - Volume 4 Issue 5, Sep-Oct 2017

	1			1									
C ₁₄	0.54	0.86	0.07	0.07	1.9	3.64	YC_{14}	0.20	0.00	0.20	0.20	0.20	0.20
C ₁₅	0.575	0.855	0.085	0.06	1.81	3.68	YC ₁₅	0.10	0.00	0.20	0.00	0.30	0.40
C ₁₆	0.52	0.86	0.07	0.07	2.00	3.8	YC ₁₆	0.40	0.20	0.20	0.20	0.00	0.00
C ₂₃	0.575	0.88	0.065	0.055	1.84	3.62	YC ₂₃	0.30	0.40	0.10	0.00	0.20	0.00
C ₂₄	0.52	0.83	0.09	0.08	2.04	3.92	YC ₂₄	0.20	0.00	0.40	0.20	0.00	0.20
C ₂₅	0.505	0.86	0.07	0.07	1.94	3.6	YC ₂₅	0.30	0.20	0.00	0.40	0.00	0.10
C ₂₆	0.58	0.9	0.035	0.065	1.79	3.36	YC ₂₆	0.20	0.00	0.20	0.10	0.50	0.00
C ₃₄	0.52	0.86	0.075	0.065	1.92	3.64	YC ₃₄	0.30	0.30	0.00	0.30	0.00	0.10
C ₃₅	0.548	0.84	0.093	0.068	1.96	3.95	YC ₃₅	0.25	0.00	0.35	0.00	0.10	0.30
C ₃₆	0.54	0.828	0.098	0.075	1.95	3.73	YC ₃₆	0.00	0.30	0.25	0.25	0.00	0.20
C45	0.52	0.868	0.075	0.058	1.93	3.8	YC ₄₅	0.50	0.20	0.00	0.15	0.00	0.15
C ₄₆	0.54	0.855	0.075	0.07	2.01	3.96	YC ₄₆	0.40	0.00	0.30	0.00	0.10	0.10
C ₅₆	0.535	0.875	0.05	0.075	1.85	3.34	YC ₅₆	0.10	0.00	0.10	0.40	0.30	0.10

IX. RESULTS

FLEXURAL STRENGTH TEST ON SNAIL SHELL ASH - PALM BUNCH ASH CONCRETE

This test was conducted on concrete beams to determine the flexural strength of each replicate beam after 28days of curing. Having known the load at rupture **P**, the distance between support **L**, the beam breadth **b** and the depth of beam **d**, for all beam specimen, the flexural strength **F**, of each replicate beam was calculated using Enq (4.1) and the mean flexural strength was calculated using equation (4.2).

$$\mathbf{F} = \frac{\mathbf{3PL}}{\mathbf{2bd}^2} \tag{4.1}$$

Flexural Strength, F =
$$\frac{\frac{Flexural \ strength}{of \ replicate \ 1} + \frac{Flexural \ strength}{of \ replicate \ 2} + \frac{Flexural \ strength}{of \ replicate \ 3}}{3}$$
(4.2)

The load at rupture for each beam (150 X 150 X 500) was obtained by the application of pressure from the universal testing machine. The Flexural Strength Test Results of 28th Day of Concrete Beams for Actual and Control are shown in table 4.1.

Table 4.1 Flexural Strength Test Results of 28th Day of Concrete Beams for Actual and Control

S/N	Point of	Flexural	Flexural	Flexural	Mean
	Observation	strength of	strength of	strength of	Flexural
		Replication 1	Replication 2	Replication 3	Strength
		(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
1	A ₁	4.507	4.760	5.720	4.996
2	A ₂	3.947	4.813	4.960	4.573
3	A ₃	4.453	4.027	5.133	4.538
4	A_4	6.240	5.893	6.253	6.129
5	A5	4.187	3.200	4.480	3.956
6	A ₆	5.389	5.333	4.533	5.085
7	A ₁₂	4.480	5.467	5.120	5.022
8	A ₁₃	4.870	4.880	5.227	4.992
9	A ₁₄	5.360	3.813	5.907	5.027

10	A ₁₅	3.867	3.813	5.040	4.240
11	A ₁₆	5.040	5.970	4.427	5.146
12	A ₂₃	6.667	6.633	5.053	6.118
13	A ₂₄	5.867	5.367	5.413	5.549
14	A ₂₅	4.373	4.600	4.213	4.395
15	A ₂₆	5.800	6.187	6.027	6.005
16	A ₃₄	4.933	5.627	3.427	4.662
17	A ₃₅	6.227	4.867	5.613	5.569
18	A ₃₆	4.667	5.133	5.067	4.956
19	A45	6.213	6.345	4.160	5.573
20	A ₄₆	5.827	6.533	3.427	5.262
21	A_{56}	5.227	8.000	6.440	6.556
22	C1	6.480	6.587	6.080	6.382
23	C_2	5.040	5.800	5.533	5.458
24	C ₃	6.027	6.080	4.650	5.586
25	C_4	4.293	4.813	6.000	5.035
26	C ₅	5.493	6.027	4.080	5.200
27	C_6	4.307	4.467	4.773	4.516
28	C ₁₂	4.035	6.000	4.267	4.767
29	C ₁₃	5.400	4.867	4.880	5.049
30	C ₁₄	6.067	5.093	5.333	5.498
31	C ₁₅	7.573	5.840	6.133	6.515
32	C ₁₆	6.480	5.867	6.493	6.280
33	C ₂₃	6.307	5.467	5.544	5.773
34	C ₂₄	5.240	4.893	5.680	5.271
35	C ₂₅	6.600	6.634	6.453	6.562
36	C ₂₆	4.133	4.747	5.960	4.947
37	C ₃₄	5.160	5.440	5.413	5.338
38	C ₃₅	4.347	5.133	4.867	4.782
39	C ₃₆	4.040	4.667	7.333	5.347
40	C45	6.267	7.467	5.333	6.356
41	C ₄₆	6.400	8.467	8.693	7.853
42	C ₅₆	5.693	6.307	7.200	6.400

FORMULATION OF THE MODELS FOR OPTIMIZATION OF FLEXURAL STRENGTH OF SNAIL SHELL ASH PALM BUNCH ASH - CONCRETE.

The flexural strength (i.e. the responses) developed at the 28th day (concrete age of 28 days) at each observation point is affected by mix proportion at that point. This response obtained from the experimental investigation was used to formulate Scheffe's Simplex Model. This Model was used to develop a computer program for optimization of flexural Strength of Snail Shell Ash Palm Bunch Ash Concrete.

$$\begin{split} Y &= X_1(2X_1-1)y_1 + X_2(2X_2-1)y_2 + X_3(2X_3-1)y_3 + X_4(2X_4-1)y_4 + X_5(2X_5-1)y_5 \\ &+ X_6(2X_6-1)y_6 + 4y_{12} X_1 X_2 + 4y_{13} X_1 X_3 + 4y_{14} X_1 X_4 + 4y_{15} X_1 X_5 \\ &+ 4y_{16} X_1 X_6 + 4y_{23} X_2 X_3 + 4y_{24} X_2 X_4 + 4y_{25} X_2 X_5 + 4y_{26} X_2 X_6 \\ &+ 4y_{34} X_3 X_4 + 4y_{35} X_3 X_5 + 4y_{36} X_3 X_6 + 4y_{45} X_4 X_5 + 4y_{46} X_4 X_6 + 4y_{56} X_5 X_6 \\ &+ e \end{split}$$

Eqn (3.8) is the mixture design model for the optimization of a concrete mixture consisting of six components. The term, y_i and y_{ij} represent compressive strength at the point *i* and *ij*. These responses are determined by carrying out laboratory tests.

FORMULATION OF SCHEFFE'S RESPONSE FUNCTION AND DETERMINATION OF FLEXURAL STRENGTHS FROM THE SCHEFFE'S SIMPLEX MODEL

The Scheffe's response function for optimization of flexural Strength of Snail Shell Ash Palm Bunch Ash concrete was formulated by substituting the values of the flexural strength results y_i , from Table 4.1 into Scheffe's model given equation (4.3).

Substituting these values gives Eqn (4.4) $Y = 4.996X_1(2X_1 - 1) + 4.573X_2(2X_2 - 1) + 4.538X_3(2X_3 - 1) + 6.129X_4(2X_4 - 1) + 3.956X_5(2X_5 - 1) + 5.085X_6(2X_6 - 1) + 20.088X_1X_2 + 19.968X_1X_3 + 20.108X_1X_4 + 16.96X_1X_5 + 20.584X_1X_6 + 24.472X_2X_3 + 22.196X_2X_4 + 17.58X_2X_5 + 24.02X_2X_6 + 18.648X_3X_4 + 22.276X_3X_5 + 19.824X_3X_6 + 22.292X_4X_5 + 21.048X_4X_6 + 26.224X_5X_6$ (4.4)

Equation (4.4) is the Scheffe's response function for optimization of flexural Strength of Snail Shell Ash - Palm Bunch Ash - concrete. The flexural strengths from the Scheffe's response function were calculated using equation (4.4).

The experimental result values and that obtained from Scheffe's response function are as shown in Table 4.2.

Response Fu	nction		
S/No	Point of observation	Flexural strength test result (N/mm ²)	Scheffe's model flexural strength results (N/mm ²)
1	1	4.996	4.996
2	2	4.573	4.573
3	3	4.538	4.538
4	4	6.129	6.129
5	5	3.956	3.956
6	6	5.085	5.085
7	12	5.022	5.022
8	13	4.992	4.992
9	14	5.027	5.027
10	15	4.240	4.240
11	16	5.146	5.146
12	23	6.118	6.118
13	24	5.549	5.549
14	25	4.395	4.395
15	26	6.005	6.005

Table 4.2: Results of Flexural Strength Test of that obtained from Scheffe's Response Function

16	34	4.662	4.662
17	35	5.569	5.569
18	36	4.956	4.956
19	45	5.573	5.573
20	46	5.262	5.262
21	56	6.556	6.556
22	C_1	6.382	5.313
23	C_2	5.458	5.063
24	C_3	5.586	5.430
25	C_4	5.035	5.595
26	C5	5.200	4.787
27	C_6	4.516	5.526
28	C ₁₂	4.767	5.280
29	C ₁₃	5.049	5.829
30	C_{14}	5.498	5.353
31	C ₁₅	6.515	5.975
32	C ₁₆	6.28	5.197
33	C ₂₃	5.773	5.055
34	C ₂₄	5.271	4.837
35	C ₂₅	6.562	5.288
36	C ₂₆	4.947	4.978
37	C ₃₄	5.338	5.294
38	C ₃₅	4.782	5.335
39	C ₃₆	5.347	5.658
40	C ₄₅	6.356	5.195
41	C46	7.853	5.157
42	C56	6.400	5.500

4.3 COMPARISON OF FLEXURAL STRENGTH OF THE BEAMS OBTAINED FROM EXPERIMENT AND THAT PREDICTED FROM THE MODEL

Table 4.3 Comparison of the Experimental and Predicted Flexural Strength Results.

Observation point	Experimental Flexural	Predicted Flexural	Difference	% Difference
	Strength YE	Strength YM	YE-YM	$\frac{YE - YM}{100}$
				YE * 100
C1	6.382	5.313	1.069	16.75024
C2	5.458	5.063	0.395	7.237083
C3	5.586	5.43	0.156	2.792696
C4	5.035	5.595	-0.56	-11.1221
C5	5.2	4.787	0.413	7.942308
C6	4.516	5.526	-1.01	-22.3649
С7	4.767	5.28	-0.513	-10.7615
C8	5.049	5.829	-0.78	-15.4486

C9	5.498	5.353	0.145	2.637323
C10	6.515	5.975	0.54	8.288565
C11	6.28	5.197	1.083	17.24522
C12	5.773	5.055	0.718	12.43721
C13	5.271	4.837	0.434	8.233732
C15	6.562	5.288	1.274	19.41481
C16	4.947	4.978	-0.031	-0.62664
C17	5.338	5.294	0.044	0.824279
C18	4.782	5.335	-0.553	-11.5642
C20	5.347	5.658	-0.311	-5.81635
C21	6.356	5.195	1.161	18.26621

The result in table 4.3 shows that the maximum percentage difference of the experimental result and that of the model are very close.

DETERMINATION OF ERROR OF REPLICATES

Table 4.4a Results of Error of Replicates for Actual

Observation	Replicate Values	Ŷ	Yi ²	ΣΥί	ΣYi ²	(ΣΥ _i) ²	Si ²
Points	Yi						
A1	4.507		20.313				
	4.760		22.658				
	5.720	4.996	32.718	14.987	75.689	224.610	0.409
A 2	3.947		15.579				
	4.813		23.165				
	4.960	4.573	24.602	13.720	63.345	188.238	0.300
A 3	4.453		19.829				
	4.027		16.217				
	5.133	4.538	26.348	13.613	62.394	185.314	0.311
A 4	6.240		38.938				
	5.893		34.727				
	6.253	6.129	39.100	18.386	112.765	338.045	0.042
A 5	4.187		17.531				
	3.200		10.240				
	4.480	3.956	20.070	11.867	47.841	140.826	0.450
A 6	5.389		29.041				
	5.333		28.441				
	4.533	5.085	20.548	15.255	78.030	232.715	0.229
A 12	4.480		20.070				
	5.467		29.888				
	5.120	5.022	26.214	15.067	76.173	227.014	0.251

A 13	4.870		23.717				
	4.880		23.814				
	5.227	4.992	27.322	14.977	74.853	224.311	0.041
A 14	5.360		28.730				
	3.813		14.539				
	5.907	5.027	34.893	15.080	78.161	227.406	1.180
A 15	3.867		14.954				
	3.813		14.539				
	5.040	4.240	25.402	12.720	54.894	161.798	0.481
A 16	5.040		25.402				
	5.970		35.641				
	4.427	5.146	19.598	15.437	80.641	238.301	0.604
A 23	6.667		44.449				
	6.633		43.997				
	5.053	6.118	25.533	18.353	113.978	336.833	0.850
A 24	5.867		34.422				
	5.367		28.805				
	5.413	5.549	29.301	16.647	92.527	277.123	0.076
A 25	4.373		19.123				
	4.600		21.160				
	4.213	4.395	17.749	13.186	58.032	173.871	0.038
A 26	5.800		33.640				
	6.187		38.279				
	6.027	6.005	36.325	18.014	108.244	324.504	0.038
A 34	4.933		24.334				
	5.627		31.663				
	3.427	4.662	11.744	13.987	67.742	195.636	1.265
A 35	6.227		38.776				
	4.867		23.688				
	5.613	5.569	31.506	16.707	93.969	279.124	0.464
A 36	4.667		21.781				
	5.133		26.348				
	5.067	4.956	25.674	14.867	73.803	221.028	0.064
A 45	6.213		38.601				
	6.345		40.259				
	4.160	5.573	17.306	16.718	96.166	279.492	1.501
A 46	5.827		33.954				
	6.533		42.680				
	3.427	5.262	11.744	15.787	88.378	249.229	2.651
A 56	5.227		27.322				
	8.000		64.000				
	6.440	6.556	41.474	19.667	132.795	386.791	1.932
					$\sum S^2_i =$		
					Sy ²	13.177	13.177
					Sy	3.63	3.63

Observation	Replicate	Ϋ́	Yi ²	ΣΥί	ΣY _i ²	(ΣΥ _i) ²	S _i ²
Points	Values						
	Yi						
C1	6.480		41.990				
	6.587		43.389				
	6.080	6.382	36.966	19.147	122.345	366.608	0.071
C 2	5.040		25.402				
	5.800		33.640				
	5.533	5.458	30.614	16.373	89.656	268.075	0.149
C 3	6.027		36.325				
	6.080		36.966				
	4.650	5.586	21.623	16.757	94.914	280.797	0.657
C 4	4.293		18.430				
	4.813		23.165				
	6.000	5.035	36.000	15.106	77.595	228.191	0.766
C 5	5.493		30.173				
	6.027		36.325				
	4.080	5.200	16.646	15.600	83.144	243.360	1.012
C 6	4.307		18.550				
	4.467		19.954				
	4.773	4.516	22.782	13.547	61.286	183.521	0.056
C 12	4.035		16.281				
	6.000		36.000				
	4.267	4.767	18.207	14.302	70.489	204.547	1.153
C 13	5.400		29.160				
	4.867		23.688				
	4.880	5.049	23.814	15.147	76.662	229.432	0.092
C 14	6.067		36.808				
	5.093		25.939				
	5.333	5.498	28.441	16.493	91.188	272.019	0.258
C 15	7.573		57.350				
	5.840		34.106				
	6.133	6.515	37.614	19.546	129.070	382.046	0.860
C 16	6.480		41.990				
	5.867		34.422				
	6.493	6.280	42.159	18.840	118.571	354.946	0.128
C 23	6.307		39.778				
	5.467		29.888				
	5.544	5.773	30.736	17.318	100.402	299.913	0.216
C 24	5.240		27.458				
	4.893		23.941				
	5.680	5.271	32.262	15.813	83.661	250.051	0.156
C 25	6.600		43.560				
	6.634		44.010				
	6.453	6.562	41.641	19.687	129.211	387.578	0.009
C 26	4.133	4.947	17.082	14.840	75.137	220.226	0.864

Table 4.4b: Results of Error of Replicates for Control

				1			
	4.747		22.534				
	5.960		35.522				
C 34	5.160		26.626				
	5.440		29.594				
	5.413	5.338	29.301	16.013	85.520	256.416	0.024
C 35	4.347		18.896				
	5.133		26.348				
	4.867	4.782	23.688	14.347	68.932	205.836	0.160
C 36	4.040		16.322				
	4.667		21.781				
	7.333	5.347	53.773	16.040	91.875	257.282	3.057
C 45	6.267		39.275				
	7.467		55.756				
	5.333	6.356	28.441	19.067	123.472	363.550	1.144
C 46	6.400		40.960				
	8.467		71.690				
	8.693	7.853	75.568	23.560	188.218	555.074	1.597
C 56	5.693		32.410				
	6.307		39.778				
	7.200	6.400	51.840	19.200	124.028	368.640	0.574
						$\sum S^2_i =$	
						Sy ²	13.003
						Sy	3.606

X. TEST FOR ADEQUACY FOR SCHEFFE'S RESPONSE MODEL

The test for adequacy for Scheffe's Response Model was done using statistics student's t- test at 95% accurate level

Null Hypothesis: This states that there is no significant difference between the experimental and theoretical (model) results.

Alternative Hypothesis: States that there is a significant difference between the experimental and theoretical (model) results.

The null hypothesis test was carried out using both student t-test at 95% confidence level. The results are as shown in the tables below:

 Table 4.5 :Statistical t-test computations for Scheffe's Response Model

Control	YE	YM	Di = YE - YM	DA – Di	$(DA - Di)^2$
ponits					
C1	6.382	5.313	1.069	2.605	6.7860
C2	5.458	5.063	0.395	-0.2113	0.0447
C3	5.586	5.43	0.156	-0.156	0.0243
C4	5.035	5.595	-0.560	0.56	0.3136
C5	5.200	4.787	0.413	-0.413	0.1706
C6	4.516	5.526	-1.010	1.01	1.0201
C7	4.767	5.28	-0.513	0.513	0.2632
C8	5.049	5.829	-0.780	0.78	0.6084

C9	5.498	5.353	0.145	-0.145	0.0210
C10	6.515	5.975	0.540	-0.54	0.2916
C11	6.28	5.197	1.083	-1.083	1.1729
C12	5.773	5.055	0.718	-0.718	0.5155
C13	5.271	4.837	0.434	-0.434	0.18836
C15	6.562	5.288	1.274	-1.274	1.6231
C16	4.947	4.978	-0.031	0.031	0.0010
C17	5.338	5.294	0.044	-0.044	0.0019
C18	4.782	5.335	-0.553	0.553	0.3058
C20	5.347	5.658	-0.311	0.311	0.0967
C21	6.356	5.195	1.161	-1.161	1.3479
		ΣDi	3.674	Σ (DA-Di) ²	14.7967
		$\Sigma D A = \Sigma D i$	0.1837	$\Sigma(DA - Di)^2$	0.7398
		$DA = \frac{1}{N-1}$		$S^{2} = \frac{N-1}{N-1}$	
				$S = \sqrt{S^2}$	0.8601
				$DA \times \sqrt{(N-1)}$	0.9551
				ι = <u>S</u>	

Legend:

 $Y_{R} = Responses(flexural strength)$ from

the experiment

 $Y_{M} = \frac{\text{Responses (flexural strength) from}}{\text{the Second degree polynomial equation}}$

N = Number of observations

 $Di = Difference of Y_E and Y_M$

 $DA = \frac{\sum Di}{N}$ = Mean of difference of Y_E and Y_M

$$S^2 = \frac{\sum (DA - Di)^2}{N-1} = Variance of difference of Diand DA$$

t =
$$\frac{DA*N^{0.5}}{S}$$
 = Calculated value of t

OP = Observation Points

EXECUTED COMPUTER PROGRAM AND DETERMINATION OF THE OPTIMUM FLEXURAL STRENGTH

A computer program for the prediction of SSA- PBA concrete beams was developed using VISUAL BASIC 6.0.

The sample of the executed program is as follows:

PROGRAM

Click start

Click ok to continue

What do you want to do?? To calculate mix ratio given desired flexural strength or calculate flexural strength given desired mix ratio? Type 1 0r 0 and click ok

Type 1 and click ok

What is the desired flexural strength??

Enter value and click ok

OUTPUT

Y = 4.573, WATER = 0.60, CEMENT = 0.85, SHELL ASH = 0.10, P. BUNCH SAND = 1.80, GRANITE = 3.60, ASH = 0.05,Y = 4.538, WATER = 0.55, CEMENT = 0.80, SHELL ASH = 0.10, P. BUNCH ASH = 0.10,SAND = 2.20, GRANITE = 4.20Y = 4.558, WATER = 0.605, CEMENT = 0.86,SHELL ASH = 0.09, P. BUNCH ASH = 0.05,SAND = 1.77, GRANITE = 3.52, Y = 4.451, WATER = 0.62, CEMENT = 0.89, SHELL ASH = 0.06, P. BUNCH ASH = 0.05,SAND = 1.68, GRANITE = 3.28,

Y = 4.455, ASH = 0.10,	WATER = 0.54 , SAND = 2.18 , GRANI	CEMENT = 0.805, TE = 4.10,	SHELL ASH = 0.095 ,	P.	BUNCH
Y = 4.451, ASH = 0.10,	WATER = 0.52 , SAND = 2.14 , GRANI	CEMENT = 0.815 , TE = 3.90 ,	SHELL ASH = 0.085 ,	P.	BUNCH
Y = 4.49, ASH = 0.055,	WATER = 0.64 , SAND = 1.57 , GRANI	CEMENT = 0.935 , TE = 2.94 ,	SHELL ASH = 0.01 ,	P.	BUNCH
Y = 4.454, ASH = 0.055,	WATER = 0.61 , SAND = 1.63 , GRANI	CEMENT = 0.925 , TE = 3.04 ,	SHELL ASH = 0.02 ,	P.	BUNCH

OPTIMUM FLEXURAL STRENGTH PREDICTABLE BY THIS MODEL IS 6.129

THE CORRESPONDING MIXTURE RATIO IS AS FOLLOWS:

WATER = 0.565 CEMENT = 0.865 SSA = 0.075 PBA = 0.06 SAND = 1.87 GRANITE = 3.62

XI. CONCLUSION

A mathematical model was developed using Scheffe's Simplex Theory. The mathematical model was used to predict flexural strength of snail shell ash – palm bunch ash cement concrete beams given any mix ratio and vice versa. There was no significant difference between the experimental results and those predicted from the model. The model developed was tested using statistical student's t – Test at 95.00% confidence level and was found to be adequate. The computer program developed using Visual Basic 6.0 can predict all possible combinations of mix proportion of Snail Shell Ash – Palm Bunch Ash – cement concrete given any flexural strength and can predict the flexural strength given a mix ratio.

The optimum flexural strength of Snail Shell Ash – Palm Bunch Ash – cement concrete predicted by this Model is 6.129N/mm². The corresponding mix ratio for the optimum flexural strength are: Water = 0.565, Cement = 0.865, Snail Shell Ash = 0.075, Palm Bunch Ash =0.06, Sand =1.87, and Granite =3.62.

ACKNOWLEDGEMENT

The authors are grateful to Engr. Prof. Ezeh, J. C, Engr. Dr. Anyaogu, L. and Engr. Dr. Arimanwa, J. I, for their help in this research. The Management of Federal University of Technology, Owerri, Nigeria is also appreciated for providing an enabling environment for the study.

REFERENCES

 Adesanya, D. A. (1996). Evaluation of blended cement mortar, concrete and stabilized earth made from OPC and Corn Cob Ash. Construction and Building Materials, 10(6): 451-456.

- [2] Adewuyi, A.P., & Ola, B. F. (2005). Application of waterworks sludge as partial replacement for cement in concrete production. Science Focus Journal, 10(1): 123-130.
- [3] Bakar, B.H.A., Putrajaya, R.C. and Abdulaziz H. (2010). Malaysian Saw dust ash – Improving the Durability and Corrosion resistance of concrete: Pre-review. Concrete Research Letters, 1(1): 6-13, March 2010.
- [4] Bhavikatti S.S 2001. Elements of Civil Engineering. Vikas Publishing house, New Delhi.
- [5] British Standard Institution (1992).
 Specifications for aggregates from natural sources for concrete, BS 882, Part 2,
- [6] British Standard Institution, London. [7] British Standard Institution (2000). Specification for Portland cement, BS EN 197-
- [7] BS 12, 1978. Ordinary and Rapid hardening Portland cement. British Standards Institute. London.
- [8] BS 1881, 1986. Methods of testing concrete. British Standards Institute. London.
- [9] BS 1881. 1983. Part 102: Methods of Determination of Slump.
- [10] BS 5328. 1997 Part 2: Structural Use of Concrete.
- [11] Chaid, R., Jauberthie, R., &Randell, F. (2004). Influence of a Natural Pozzolan on High Performance Mortar. Indian Concrete Journal, 22.
- [12] Concrete Technology by M. S. Shetty 6th Edition, S. Chand Publications.

- [13] Cordeiro, G. C., Filho, R. D. T., & Fairbairn,E. D. R. (2009). Use of ultrafine saw dust ash
- [14] Draper N.R. Pukelsheim F, 1997. Keifer Ordering of Simplex designs for first and second degree mixture models. J. Statistical Planning and Inference. 79:325-348.
- [15] Draper NR. St. John RC, 1997. A mixture model with inverse terms. Technometrics.17: 37-46.
- [16] Ettu L. O, Nwachukwu K. C, Arimanwa J. I, Awodiji C. T. G, and OparaH. E. "Variation of Strength of OPC-Saw Dust Ash Cement Composites with Water-Cement Ratio" International Refereed Journal of Engineering and Science, Volume 2, Issue 7 (July 2013), PP. 09-13.
- [17] Ezeh J.C, Ibearugbulem OM, 2009. Application of Scheffe's model in optimization of compressive strength of Rivers stone Aggregate concrete. Int. J. Natural and Applied Sciences. 5(4): 303-308.
- [18] Ezeh, J. C., &Ibearugbulem, O. M. (2009a). Suitability of Calcined Periwinkle Shell as PartialReplacement for Cement in River Stone Aggregate Concrete. Global Journal of Engineering and Technology, 2(4): 577-584.
- [19] Habeeb, G. A., &Fayyadh, M. M. (2009). Saw dust ash Concrete: The Effect of SDA.
- [20] Hariheran, A. R., Santhi, A. S., Mohan Ganesh, G. (2011), Effect of Ternary Cementitious System on Compressive Strength and Resistance to Chloride Ion Penetration, International Journal of Civil and Structural Engineering, 1(4), 695 – 706.
- [21] Lasis F. Ogunjimi B, 1984. Mix proportions as factors in the characteristic strength of lateritic concrete. Inter. J. Development Technology. 2(3) :8-13.
- [22] Mahasenan, Natesan, Smith, S., Humphreys, K., & Kaya, Y. (2003). The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions. Greenhouse Gas Technologies - 6th International Conference (pp. 995-1000). Oxford.
- [23] Majid K.I. 1974. Optimum Design of Structures.Butterworth and companyLimited, London.
- [24] Malhotra, V. (1998). The Role of Supplementary Cementing Materials in Reducing Greenhouse Emissions. Concrete,

Fly Ash and the Environment Proceedings. Building Green.

- [25] Malhotra, V.M. and Mehta, P.K. (2004). Pozzolanic and Cementitious Materials. London: Taylor & Francis.
- [26] Mehta, P. K. and Pirtz, D. (2000). Use of rice husk ash to reduce temperature in high strength mass concrete. ACI Journal Proceedings, 75: 60-63.
- [27] Mehta, P. K., & Monteiro, P. J. (2006). Concrete, Microstructure, Properties and Materials. McGraw Hill.
- [28] Mendenhall W.,Beaver,R.J and Beaver,B.M. 2003. Introduction to Probability and Statistics, 11thEdition.USA: Books/Cole Thompson learning.
- [29] Neville, A.M. (2012). Properties of Concrete. Prentice Hall.
- [30] Neville, A.M. Properties of Concrete, 5th eds., Ritman Limited, New York, 2000, p. 900.
- [31] Nigeria Industrial Standard, NIS 412, Standards for Cement, Standard Organization of Nigeria, Abuja, Nigeria, 2009, pp. 9-15.
- [32] Obam, S. A, 1998. A model for optimization of strength of palm kernel shell aggregate concrete. A M.Sc Thesis. University of Nigeria Nsukka.
- [33] Olugbenga, A. (2007). Effects of Varying Curing Age and Water/Cement Ratio on the Elastic. Properties of LaterizedConcrete.Civil Engineering Dimension, 9 (2): 85 – 89.
- [34] Osadebe. N.N (2003). Generalized mathematical modeling of compressive strength of normal concrete as a multi-variant function of the properties of its constituent components. University of Nigeria Nsukka
- [35] Peray, K. (1998). The Rotary Cement Kiln. CHS.
- [36] Portland Cement Association. (2013). Retrieved from America's Concrete Manufacturers: http://www.cement.org/basics/concretebasics_ chemical.asp.
- [37] Scheffe, H (1958). Experiments with mixtures.J. Royal Stat. Soc. Ser. B. 20:344-360.
- [38] Scheffe, H (1963). Simplex centroidal design for experiments with mixtures. J. Royal Stat. Soc. Ser. B. 25:235-236.
- [39] Shetty, M.S, Concrete Technology, Theory and Practice, revised ed., S. Chand and Company Ltd., Ram Nagar, New Delhi, 2005, pp. 124-217.

- [40] Simon, M (2003). Concrete mixture optimization using statistical method. Final Report. Federal Highway Administration, Maclean VA, pp. 120-127.
- [41] Singh, N. B., Singh, V. D. &Rai., R. (2000). Hydration of bagasse ash-blended Portland cement. Cem.Concr. Res. 30: 1485-1488.
- [42] Specification for Fly Ash and Raw or Calcined Natural Pozzolanas for Use as Mineral Admixture in Portland Cement Concrete, American Society for Testing and Materials Standards, Philadelphia, USA, 2008.
- [43] Specification for Ordinary and Rapid Hardening of Portland Cement, British Standard Institution, London, 2000
- [44] Synder, K.A. (1997). Concrete mixture optimization using statistical mixture design methods. Proceedings of the PCI/FHWA International Symposium on High Performance Concrete, New Orleans, pp. 230-244.

- [45] Umoh, A. A. and Olusola, K. O. (2012), Effect of Different Sulphate Types and Concentrations on Compressive Strength of Periwinkle Shell Ash Blended Cement, International Journal of Engineering & Technology IJET-IJENS 12(5), 10-17.
- [46] Umuonyiagu, I.E. and Onyeyili, I.O, 2011. Mathematical model for the prediction of the compressive strength characteristics of concrete made with unwashed local gravel. Journal of Engineering and Applied Sciences, NnamdiAzikiwe University Awka, Vol 7 No2, pp 75-79.
- [47] US Department of Energy. (2006). Emisions of Greenhouse Gases in the US. Energy Information Administration.
- [48] Waithaka, J. (2014, January 15). Kenya Cement Prices Hiked On New Mining Levy. The Star.