
International Journal of Engineering Trends and Applications (IJETA) – Volume 4 Issue 4, Jul-Aug 2017 

ISSN: 2393-9516                          www.ijetajournal.org                                                 Page 1 

 

A Numerically Robust T-Matrix Method for Multiple 

Polygons 
K.Rekha [1], Dr.K.Thirugnanasambandam [2] 

Phd Scholar [1], Assistant Professor [2] 
Department of Mathamatics 

Manonmanium Sundaranar University, Tirunelveli [1] 
          Muthurangam Government Arts College, Vellore [2] 

Tami Nadu - India 
ABSTRACT 

Here we introduce the Transmission Matrix (T-matrix) T-matrix methods for single and multiple obstacles ( 1.2), for 
which the results and derivations. We focus in particular on a relatively recent approach. (The novel contribution of 
this paper is the combination with the Embedding Formulae which significantly reduces the computational cost 
required. Hence, it should be noted that the derivations and results are not new. In this paper we emphasis on the T-
matrix system for single obstacles. The building of the T-matrix will be undistinguishable for the numerous scattering 
invention. 
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I. INTRODUCTION 

 
1.1     T-matrix methods for single scattering 

 

Initially we focus on the T-matrix method for single 
obstacles. The construction of the T-matrix will be 
identical for the multiple scattering formulation of the 
problem of  1.2, in which each obstacle will have a 
single T-matrix, independent of the incident field. We 
are interested in the T-matrix because it extends easily 
to multiple scattering problems. The single scattering 
method has other applications, in particular for 
modelling moving obstacles. We do not explore this 
here. 
 
1.1.1 Specific problem statement 

 

Here we assume that the origin lies inside of a bounded 
open set Ω− ⊂ R2 with boundary ∂Ω, such that the ball 
BR− with radius R− ≥ diam(Ω−)/2, is centred at the origin 
and contains Ω−. We do not impose the requirement that 
Ω− is connected, i.e., this obstacle can consist of many 
obstacles, and all of the following will still hold, 
provided a method to approximate the problem on Ω− is 
available. For the purpose of understanding the T-
matrix method, it is simpler to consider Ω− as a single 
connected set. We consider the expansion of the 
incident field in terms of regular wavefunctions ψℓ

inc, 
that is uinc(x) = 
Xbℓψℓ

inc(x)
 

in B−, where  
ψℓ

inc(x):=J|ℓ|(k|x|)eiℓθx,

 

(1.1) ℓ where Jn is the Bessel function of the first kind 
order n and θx ∈ [0,2π) is the angle that x ∈ R2 makes 
with the x1-axis. We expand the scattered field in terms 
of radiating wavefunctions ψℓ

s, that is us(x) = Xaℓψℓ
s(x) 

in R2 \ B− where ψℓ
s(x) := H|

(1)
ℓ| (k|x|)eiℓθx, (1.2) ℓ where 

Hn
(1) is the Hankel function of the first kind, order n. At 

this stage, we consider the infinite dimensional case, for 
which both sums (1.1) and (1.2) are over all ℓ ∈ Z. The 
T-matrix is the matrix T that maps a := (aℓ)ℓ to b := (bℓ)ℓ, 
hence 
 
Ta = b. (1.3) 
For incident fields such as plane wave and point source 
incidence, the coefficients bℓ are known and can be 
written explicitly (see [24]). 
 
1.1.2 Computing the entries of the T-matrix 

 

Given (1.3) and the coefficients a, if we can compute 
(and invert) T then we have a representation for the 
scattered field from (1.2). The original formulation of 
T-matrix of [55] contains two methods to compute T, 
via the representation 
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T = −BA−1.

 (1.4) 
The first method requires 

 i s , and (

 i , (1.5) 
whilst the second 

approach 
takes 

 i s , and ( i . (1.6) 
4 

Both approaches are commonly referred to as the Null Field Method, which along with other approaches (not mentioned 
here), can become numerically unstable for certain geometries Ω− due to the singular nature of the Hankel functions (for 
more details see [23,  3]). This motivated the Tmatrom method of [21], for which 

  (1.1) 
where F∞ denotes the far-field map of (1.16). It follows that the Tmatrom method does not suffer from the same stability 
issues as other T-matrix methods, since the integrand of (1.1) is smooth. Tmatrom has the additional requirement that a 
solver, by which we loosely mean a numerical method which maps the Regular Wavefunction ψn

inc to an approximation 
of the far-field pattern F∞ψn

inc, must be incorporated into the Tmatrom method. A suitable solver may involve the space 
VN

HNA(∂Ω) as introduced in Paper 2, although there are many suitable choices. In the numerical example that follows we 
use MPSpack of [4]. 
 
1.1.3 Truncation of the T-matrix 

 

In practice, we must truncate the T-matrix so that it is finite dimensional, summing over indices ℓ = −Nˆ to ℓ = Nˆ, for Nˆ 
∈ N0. The finite dimensional case with truncated T results in an approximation to us via (1.2) and (1.3), and as Nˆ increases, 
this approximation improves. We define the truncated T-matrix as 

 , for Nˆ ∈ N0. 
The number of dimensions Nˆ is typically chosen to satisfy the condition of [56]: 

  , (1.8) 
which is justified for the case (1.1) with point source or plane wave incidence in [24, Theorems 3.6 and 3.1]. This is 
another advantage over the null field method, which does not have this theoretical validation. Given that we sum over 
negative and positive indices of the wavefunctions, we require the far-field pattern and hence the solution, of 2Nˆ + 1 
problems with different radiating wavefunction incidence. It is clear from (1.8) that k . Nˆ as k → ∞, hence the number of 
solves required by the Tmatrom method grows more than linearly with the wavenumber k, posing potential difficulties at 
large wavenumbers. 
Given the truncated vector of coefficients 

aˆ := , 
we can construct an approximation to the far-field pattern (1.16), by expanding each term in the truncated series (1.2) as 
r → ∞ using [18, (10.2.5)], 

Nˆ 
 u∞(θ) ≈ uˆ∞Nˆ (θ) := X i−|ℓ|−1aˆℓei(ℓθ). (1.9) 

ℓ=−Nˆ 
We have the following error estimate from [24, Theorem 3.9]. 
 

THEOREM 1.1. For scattering of a plane wave by a single obstacle Ω−, if N >ˆ kR−/2 + 1 then the following error bound 

holds: 

 , (1.10) 
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where C and C′ are positive constants independent of k and Nˆ, ǫF denotes the error in the far-field approximation of the 

solver used, and  is the approximation (1.9) to the far-field pattern u∞ of (1.16). 
 
1.2 T-matrices for multiple scattering 

 

In this section we outline the procedure to extend any T-matrix method to multiple obstacles, which is based on the 
derivation of [22,  2.2]. Everything in this section holds for the infinite dimensional or truncated T-matrix case. Suppose 

now that Ω− consists of nγ pairwise disjoint obstacles, which we denote Ωi for i = 1,...,nγ, hence Ω . For each 
obstacle, we denote by xc

i a point inside of Ωi, and denote by T(i) the T-matrix corresponding to the obstacle Ωi with a 
coordinate system translated by  in each case, so that the origin is inside of the obstacle. We impose the additional 
constraint that there exists a collection of pairwise disjoint balls BRi(xc

i) ⊃ Ωi, Ri > 0 for i = 1,...,nγ. Recalling the example 
(4.1), we now formulate the multiple scattering T-matrix method by considering a single scattering problem on each 
obstacle, where the sum of the scattered fields emanating from all other obstacles is absorbed into the incident field of a 
single scattering T-matrix problem on the ith obstacle Ωi: 
 uinci := uinc + X′ usi′, in Bi (1.11) 
i =6 i 
where  is the (also unknown at this stage) contribution to the scattered field from the obstacle i′. Recalling that each 
single scattering problem requires the origin to be positioned inside of the scatterer, we will make use of the Translation 

Addition Theorem of [19] to translate x  to xc
i. Proceeding as in [22,  2.2], we define the two-dimensional analogue of 

translation addition matrix of [19, (51)] as 

 
where 

 
and 

 
Denote by a(i) the vector a of (1.1), corresponding to the solution to the single obstacle problem (1.1.1) on Ωi. We seek to 
determine the vector b(i), which corresponds to the field scattered by Ωi, given that additional terms have been absorbed 
into the incident field (1.11), emanating from the other scatterers. We may expand the terms in (1.11) to obtain a 
representation for the incidence 

 , x ∈ Bi. (1.12) 
Now multiplying (1.12) by T(i), the T-matrix for the obstacle Ωi, we obtain the contribution to the scattered field from Ωi, 

 , x in R2 \ Bi, 
(1.13) hence to 

determine the coefficients b(i) of the scattered field for each Ωi, the system to solve is 

 a , for i = 1,...,nγ. (1.14) 

As in the single scattering case, in practice each T-matrix (and consequently each translation addition matrix ) must 
be truncated in accordance with (1.8). 
 
II. REDUCING THE NUMBER OF SOLVES REQUIRED 

 

Here we extend the Tmatrom method by combining it with the Embedding Formulae used in Paper 6. The theory here is 
for a single obstacle, but is equally adaptable to multiple obstacles using the ideas discussed in  1.2. We suppose now that 
our obstacle Ω− is a rational (in the sense of  6.1) polygon. First we introduce the Herglotz kernel (of Definition 1.8) for 
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the far-field pattern of the ℓth Regular Wavefunction ψℓ
inc, which follows by the Jacobi-Anger expansion (e.g. [11, (3.89)]) 

and the definition (1.1): 
(1.15) 
, 
hence we can write (as in  6.4.1) 

 
Using this, we may use our HNA method for Herglotz type incidence of  3.1 with Herglotz kernel gℓ, and solve for ℓ 

= −MT ,...,MT . Using results computed in this thesis, we can determine the error in the approximation. 
 

COROLLARY 1.2. Suppose the conditions of Theorem 1.1 are satisfied, and the Herglotz-type HNA method of  3.1 is 

chosen as the solver to be used in conjunction with Tmatrom. Then the constant ǫF of Theorem 1.10 is bounded by 
ǫF ≤ Ck−1/2Cq(k)M∞(u)J(k)e−pτΓ, 
where C,J,p and τΓ are the constants from Corollary 2.11, Cq is the stability constant from Remark 2.13, whilst 

 2diam(Ω  , 
where C1 and L∗ are as in Theorem 3.1. 
Proof. Follows immediately from (2.12), whilst the bound on M∞(u) follows from Theorem 3.3, noting that the required 
bound on the Herglotz kernel is kgℓkL2(0,2π) = 1, by (1.15).  

When solving high frequency problems, Tmatrom with Herglotz-type HNA clearly provides a numerically robust 
approximation, with explicit error bounds available in the specific case of single scattering by a plane wave. The key 
advantage is that once the T-matrix has been computed, it can be re-used for different incident waves, and problems can 
be solved very quickly, as the coefficients are given explicitly. This is exactly the same benefit of using the Embedding 
Formulae in Paper 6; once the canonical problems were solved, we can solve easily for any incident angle, and bound the 
error in doing so. We do not compare the efficiency of the two methods here, instead we combine them. 

We now provide a brief example to motivate integration of the Embedding Formulae with a numerical solver, before 
incorporating with Tmatrom. Suppose that we are solving the problem of scattering of a plane wave with wavenumber k 

= 1000 by multiple (identical) squares, of identical orientation. The same T-matrix may be used for each square. Given 
that the total number of solves is 2MT +1, and we must satisfy the condition (1.8), we must solve for ℓ ∈ {−1045,...,1045} 
incident fields, a total of 2091 solves. Although it is only necessary to recompute the right-hand side of the Galerkin 
system (2.11) in each instance, as k grows the number of solves grows faster than 2k, clearly introducing a k-dependence 
to the method. However, from Remark 6.1, one can implement an embedding formula for a square by solving for only 
eight plane waves, after which we can use the Embedding Formulae to produce the far-field pattern for Herglotz kernel 
gℓ of 1.15 for ℓ ∈ {−1045,...,1045}, enabling us to compute the T-matrix without the need for further solves. This number 
does not increase with frequency, and depends only on the geometry of the obstacle. 

We may write this idea generally for any rational (in the sense of  6.1) polygonal obstacle Ω−. Using embedding 
theory 

  where dα := (cosα,−sinα) 
where F∞ is the far-field map (1.11). Inserting into (1.1) and substituting (6.4) we obtain an extension to the Tmatrom 
method, for which the entries are computed via 

 
Hence only Mω solves are required for the Tmatrom algorithm, where Mω depends only on the geometry of Ω−. In  6.1.2 
it was shown that the representation (6.4) breaks down when implemented numerically, hence in practice the matrix 
entries should be computed using 

  (1.11) 
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where ) is the Combined Expansion Approximation of Definition 6.6, with NT the parameter 
corresponding to the degree of the Taylor expansion taken. The integral (1.11) must be computed using a quadrature rule, 
as discussed in Appendix B. Where possible, these points should be chosen in the same spirit as (6.34), with α nodes as 
far as possible from the points in [0,2π) at which only a first order Taylor approximation is used. 

Tmatrom is in some ways superior to traditional T-matrix methods (such as the Null Field approaches (1.5) and 
(1.6)), in that it is provably stable for any configuration. This comes at the cost of the requirement to solve O(k) scattering 
problems before the T-matrix can be computed, which is not a requirement of the other (less stable) T-matrix methods. 
By coupling Tmatrom with the Embedding Formulae of Paper 6, this O(k) dependence becomes O(1), and the cost of 
computing the more stable Tmatrom T-matrix has the same k-dependence as a traditional T-matrix method, such as (1.5) 
or (1.6). Therefore this combined approach offers stability, at no extra k-dependent cost. Justifying this claim with 
numerical results is a key area for future work. Figure 1.1 shows the output of the combination of Tmatrom with our 
embedding solver and the MPSpack solver. This required 8, 12 and 30 solves on the triangle, square and pentagon 
respectively, a total of 50 solves, a number independent of k. For wavenumber k = 5, using MPSpack without solving via 
the Embedding Formulae results in a total of 21 solves on each scatterer, hence a total of 81 solves. So even at a relatively 
low wavenumber using a non-HNA solver, the Embedding Formulae can reduce the number of solves required. 

 
Figure 1.1: Real part of total field u for a configuration of multiple polygons, with incident field uinc

PW (·;π/2) solved using 
MPSpack as the solver used for the embedding implementation, which in turn is used as the solver for Tmatrom. The 
expansion is only valid outside of the balls Bi containing the obstacle Ωi, for i = 1,2,3. 
 
 
 
 
 
III. CONCLUSION  

We conclude this paper with a summary of the k-
dependency of different Tmatrix methods. We first note 
that the matrix T is in principle the same regardless of if 
a null-field method (1.5), (1.6) or Tmatrom method (1.1) 
is used, hence it is recommended that the size of the 

truncated T-matrix grows like O(k) (specifically (1.8)) 
for any approach. For cases where they are robust, 
traditional T-matrix methods may be performed 
relatively quickly at low k, requiring two integrals for 
each entry of the T-matrix ((1.5) and (1.6)). This 
suggests an advantage over Tmatrom, which (i) requires 
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a new scattering problem to be solved for each of the 
O(k) columns of T, whilst (ii) each column in turn may 
require O(k) such integrals if (for example) a standard 
Galerkin BEM solver is used. However, for polygons an 
HNA solver may be used to reduce the dependency of 
the Galerkin system to O(1) (as discussed in  2.3) which 
overcomes (ii), and we have shown that Embedding 
formulae may be used to reduce the number of scattering 
problems to O(1), which overcomes (i). Moreover, for 
large k and hence large T-matrices, numerical cost of the 
inverted matrix of (1.4) will increase for standard T-
matrix methods, whilst Tmatrom does not require the 
inversion of any large matrices, so at large k a method 
combining HNA BEM and Embedding formulae with 
Tmatrom is advantageous over a standard T-matrix 
method. Investigating this combination is a key area for 
future work; the only k-dependence with such a method 
would take the form of O(k2) integrals used to compute 
T, which contain smooth integrands, and may be 
computed using sophisticated quadrature routines . The 
purpose of this paper was to lay the ground work for 
such an implementation. 
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