
International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 6, Nov-Dec 2015

ISSN: 2393-9516 www.ijetajournal.org Page 7

Data Synchronization over Cloud Accounts
Aliraza Punjani [1], Singh Vijendra [2], Ankit Vasa [3], Prof. Sudhir Dhage [4]

Student [1], [2] & [3], 2Associate Professor [4]
Department of Computer Science and Engineering

University of Mumbai
Mumbai - India

ABSTRACT

Transferring data from one cloud account to another is a tedious task. It is necessary to download the contents that

one needs to transfer to his/her computer before it can be uploaded to the destination cloud account. This process is

not only time consuming but also requires that the end user’s computer has enough resources to temporarily hold

data that is to be transferred. Data Synchronizat ion over Cloud Accounts is a web based application that attempts to

connect technologies, like Google drive and Dropbox, that don’t really get along very well, and make them work as

one. Our application devises an effective load balancing algorithm to transfer data directly from Dropbox to Google

drive or vice-versa without having to download them to end user’s computer’s first. The algorithm effectively

breaks apart the user tasks into individual independent jobs which are allocated to proxy servers in order to

complete the task at a faster rate while balancing the system load. Thus, we developed an effective system using

divisible load balancing theorem to maximize or min imize d ifferent performance parameters such as throughput and

latency for balancing the load on the server at a particular instant. We developed integrated measurement for the

total load level of a server datacenter as well as the load level of each server. We have calculated and compared

average response time of our load balancing algorithm with Honeybee Algorithm and Round -Robin

Algorithm. Simulat ion results show that our algorithm has good performance with regard to total load level,

average imbalance level of each server, as well as overall running time.

Keywords:- Data Synchronization, Google drive, Dropbox, load balancing, Honeybee Algorithm, Round-Robin

Algorithm

I. INTRODUCTION

One of the main components of a distributed system is

the distributed process scheduler that manages the

resources of the system. The efficient usage of the large

computing capacity of a distributed system depends on

the success of its resource management system. A

distributed process scheduler manages the resources of

the whole system efficiently by distributing the load

among the processors to maximize the overall system

performance[1]. The d istributed scheduler must perform

the load distributing operations transparently, which

means the whole system is viewed as a single computer

by the users of it [2].

A distributed system consists of independent

workstations connected usually by a local area network.

Users of the system submit jobs to their computers at

random times. In such a system some computers are

heavily loaded while others have availab le processing

capacity. The goal of the load distributing schema is to

transfer the load at heavily loaded machines to idle

computers, hence balance the load at the computers

and increase the overall system performance.

It is a p rocess of reassigning the total load to the

individual nodes of the collective system to make

resource utilization effective and to improve the response

time of the job, simultaneously removing a condition in

which some of the nodes are over loaded while some

others are under loaded. A load balancing algorithm

which is dynamic in nature does not consider the

previous state or behavior of the system, that is, it

depends on the present behavior of the system. The

important things to consider while developing such

algorithm are : estimation of load, comparison of load,

stability of different system, performance of system,

interaction between the nodes, nature of work to be

transferred, selecting of nodes and many other ones .

This load considered can be in terms of CPU load,

amount of memory used, delay or Network load.

Thus we aim to design an effect ive load balancing

mechanis m for optimal resource utilization which helps

RESEARCH ARTICLE OPEN ACCESS

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 6, Nov-Dec 2015

ISSN: 2393-9516 www.ijetajournal.org Page 8

the application to balance the load among the cluster

machines. The application will thus allow users to move

or copy files from one cloud storage (Dropbox) to

another (Google Drive) or vice versa without using end

user’s personal computer’s resources such as its central

processing unit’s processing time and bandwidth. Users

can thus switch cloud storage providers and thus do not

have to download and upload the files/folders on their

machine rather than the task is accomplished by

workstations in the underlying d istributed network. No

plug-ins or scripts are required to be installed in the

browser and allows client to manage everything from

applications web interface. Secure data transfer to

maintain privacy of user’s data.

II. ARCHITECTURE

Fig.1 Proposed System Architecture

The major h igh-level components of the system

include a central server, the proxy servers and the clients.

The client interacts with the proxies using HTTP

protocol. The central server interacts with the proxies

using HTTP and FTP protocols. The proxy servers

interact with each other using HTTP and FTP protocols.

Canvas JS – as a monitoring tool. The end-user accesses

the application using a web browser.

Initially the central server has all the applications

while the proxy servers are empty. Now suppose a client

hits a proxy to use one of the available applications.

Firstly the client is authenticated. To do this it is checked

if it is registered with this proxy. If no then this proxy

asks the central server to see if it has registered with

some other proxy and hence downloads his details. Now

if this proxy server has the application then the client is

allowed to proceed. Else this proxy asks its own

neighbors if they have the requested application. If any

one of them has it then whosever reply comes first, the

client is redirected to that proxy. If none of them has then

it downloads the application directly from the central

server. In both the above cases, all the required details of

the client are then transferred to the neighboring proxy.

Load Balancing is done periodically by the central

server calculating the load at each of the proxy servers. A

need for scale-up comes into picture if each of the proxy

servers is overloaded and a new user request comes.

Scale down is done if a significant number of proxies are

under loaded.

III. IMPLEMENTATION

A. Honey Bee Algorithm

In [2] and [3], Honeybee algorithm is used for co-

ordination of servers hosting Web Services. In load-

balancing operation, each server takes a particular bee

role with probabilities px or pr. These values are used to

mimic the honeybee colony whereby a certain number of

bees are retained as foragers – to exp lore (px) ; rather

than as harvesters – to exploit existing sources. A server

successfully fu lfilling a request will post on the advert

board with probability pr. A server may randomly choose

a proxy server’s queue with probability px(exploring),

otherwise checking for an advert (watching a waggle

dance). In summary, id le servers (wait ing bees) follow

one of two behaviour patterns: a server that reads the

advert board will follow the chosen advert, then serve the

request; thus mimicking harvest behaviour.

A server not reading the advert board reverts to forage

behaviour; servicing a random proxy server’s queue

request. An executing server will complete the request

and calculate the profitability of the just-serviced proxy

server. The completed server (i.e. returning bee)

influences system behaviour by comparing its calculated

profit with the colony profit on the advert board, and

then adjusts px (controlling the exp lore/exp loit ratio) and

colony profit accordingly. If the calcu lated profit was

high, then the server returns to the current proxy server;

posting an advert for it (waggle-dancing) according to

probability pr. If profit was low, then the server returns

to the idle/wait ing behaviour described above. Initially,

every server starts with explore/fo rage behaviour, and as

requests are serviced, the advert waggle-dance-guided

behaviour begins to emerge. Given a robust profit

calculation method, this behaviour pattern provides a

distributed and global communication mechanis m;

ensuring “profitable” proxy servers appear attractive to

and are allocated to available servers .

B. Proposed Algorithm

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 6, Nov-Dec 2015

ISSN: 2393-9516 www.ijetajournal.org Page 9

Step 1: To calculate the average execution time of

each subtask.

Step 2: If the required execution time of a subtask is

less than or equal to the average execute time then carry

out the subtask to execute normally.

Step 3: If the required execution time of a subtask is

greater than the average execute time then executing

time is set to ∞ (the execution time is too long so that

cannot to be considered). The other nodes that had been

executed will re-enter into the system to participate the

execution of subtask.

Step 4: Repeat Step 1 to Step 3, until all subtasks have

been executed completely.

The tasks can be assigned to execute quickly by the

integrated scheduling algorithm and the effective service

nodes can be chosen by the threshold in a three-level

cloud computing network.

The two-phase scheduling algorithm integrates OLB

and LBMM to assist in the selection for effective service

nodes. First, a queue is used to store tasks that need to be

carried out by manager (N0), then the OLB scheduling

algorithm within "threshold of service manager" is used

to assign task to the service managers in second layer

(N1,N2,N3,N4,N5). However each consignation carries out

of the task have d ifferent characteristic, so the restriction

of node selection is also different. An agent is used to

collect the related information of each node.

According to the property of each task, the threshold

value of each node is evaluated and a service node will

be assigned. However, in order to avoid the execution

time of some is too long and affect system performance,

"threshold of service node" is used to choose the suitable

service node to execute subtask. [4]

C. Pseudo Code

Input: User request (Tasks)

Output: Balanced Load

Begin

1. Initialize si in Vj serving Qi, Revenue rate T,

Advert: posting prob p, reading prob n, read interval T

2. While(true)

 While Q not empty do //service queue

 Serve request();

 if T expired then

 compute revenue rate;

 adjust n from lookup table;

3. If Flip(p) == True then Post Advert;

 If T expired && Read(ri)==True then

 If forager then Select/Read advert id Vk

//randomly select

 Else proxy server id Vk //randomly select

 If Vk Not.Eq Vj then Switch (Vk)

 //migrate to proxy server

4. End while

End

Service request()

{

Loop for i from 1 to n

Loop for j from 1 to m

 timeChart=calculateTime(task[i],node[j])

 //get time estimates of each task

end loop

end loop

while(tasks exists)

unblock all nodes //unblock all nodes for the new

iteration

minPair[]={all min task-node pairs}

 //get the minimum task-node pair

loop for i from 1 to n

if(minPair[i].task.time<=task.threshold)

 //execute the task only if doesn’t exceed the

 // threshold of service node

minPair[i].task.execute()

minPair[i].node.block()

end if

end loop

end while

}

Parameters:

timeChart Task-node time estimation table

minPair Minimum value from the set

task.time Estimated time for the task

task.threshold Threshold time for the task

IV. APPENDIX

Process transfer policies for transferable load

There are three strategies that can be implemented to

man-age transferable load. First strategy requires that

that each load be time stamped before load balancing

initiates. The timestamp for the previous balancing

iteration must also be available. With these two

parameters new processes can be distinguished from the

older ones and load balancing can be carried out

assuming the older processes to be non-transferable.

The second strategy doesn’t differentiate between old

pro-cesses and processes which have arrived in the

current itera-tion. All the processes are candidates for a

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 6, Nov-Dec 2015

ISSN: 2393-9516 www.ijetajournal.org Page 10

transfer and no effort is made to avoid transfer of older

processes. A draw-back of this strategy is that it causes

unnecessary transfer of resident older processes which do

not require t ransferring thus incurring unnecessary

overheads associated with the transferring of processes

from one to another.

The third and the final strategy aims at minimizing the

transfer of processes from one node to another by

transfer-ring only an optimal number o f processes which

help achieve a balanced state of the system. At the same

time it aims at eliminating the overhead involved with

time stamp-ing strategy.

The strategy uses a Load Deviation Factor (σ)

Where

 = individual load

Np = total number of processes

 =

Condition for balanced node:

 (- σ) ≤ Np(l) ≥ (+ σ)

Nodes having loads in the range ± σ are assumed to

be balanced and their loads are not transferred. Nodes

having loads above or below the specified region have

their exceeded loads as candidates for transfer.

V. RESULTS

 In order to compare the described algorithms, a

simulation model was set up to allow as direct a

comparison of results as possible. For the Honeybee

Foraging algorithm experiment, the server colony

consisted of M proxy server types with N servers

(representative of bees). The round robin method is used

to control the advert board reading process. The

probability (px) that a server reads the advert board (i.e.

forages) is initially set to 0.2 whilst the probability (pr)

that a successful server writes to the advert board (i.e.

performs a waggle dance) is 0.8. An advertisement’s

lifespan on the advert board is equal to 10 ticks.

 For the remaining approach, Biased Random Sampling,

the parameters are identical to the previous experiments.

Here, the node with the g reatest free resources on a walk

is preferred; to receive the new job, its resources must be

greater than or equal to those of the last node on the

random sampling. The results that receive scrutiny in the

following section are based on two phases of

experiments as described above. The first phase

measured throughput against diversity; all experiments

ran for N=1000, and an increasing value of M (10 to

800) for each iteration. The second phase measured

throughput against available resources; experiments ran

for M=10, and increasing values of N for each iteration

(100 to 1000).

Fig.2 shows the comparative performance on a simulated

heterogeneous system, with the x axis showing the effect of increased

system diversity on performance: This graph demonstrates that the

honeybee algorithm and proposed algorithm performs consistently well

as system diversity increases. However, despite performing better with

high resources

and low diversity, both the random sampling walk degrades as system

diversity increases.
[5]

Fig.3 shows the comparative performance on a simulated system where

as the load increases shows the effect of increased time required to

complete the task:

This graph demonstrates that the Proposed algorithm performs better

than Honey bee load balancing and Random sampling.

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 6, Nov-Dec 2015

ISSN: 2393-9516 www.ijetajournal.org Page 11

0

100

200

300

400

500

600

0 240 270 290 450 490 510

L
o
a
d

(M
B

)
LOAD VS TIME

Proxy A

Proxy B

Fig.4 shows results of load balancing between two proxy servers

VI. CONCLUSION

We have shown through experimental results that our

task division algorithm functions is the most suitable for

balancing the type of load generated by data

synchronization application. Thus we have successfully

implemented Data synchronization between cloud

accounts with divisible load balancing mechanism to

efficiently balance the load generated by the application.

REFERENCES

[1] Singhal M., Sh ivaratri N., 1994, Advanced

Concepts In Operating Systems, McGraw Hill

[2] Tanenbaum, A., 1995, Distributed Operating

Systems, Prentice Hall

[3] Martin Randles, A. Taleb-Bendiab and David Lamb,

Cross Layer

Dynamics in Self-Organising Service Oriented

Architectures.

IWSOS, Lecture Notes in Computer Science, 5343,

pp. 293-298, Springer, 2008.

[4] Shu-Ching Wang, Kuo-Qin Yan, Wen-Pin Liao and

Shun-Sheng Wang ,Towards a Load Balancing in a

Three-level Cloud Computing Network

[5] Martin Randles, David Lamb, A Comparat ive

Study into Distributed Load Balancing Algorithms

for Cloud Computing , 2010 IEEE 24th

International Conference on Advanced Information

Networking and Applications Workshops

http://www.ijetajournal.org/

