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ABSTRACT 
This paper presents the FPGA implementation of a Decimal Floating Point (DFP) adder. The design performs addition on 64-bit 

operands that use the IEEE 754-2008 DPD encoding of DFP numbers. The design uses an equal bypass adder, this adder 

reduces the power consumption and it also reduces the delay by reducing the gate count. The design also uses barrel shifter 

instead of sequential shifter. The design has a maximum combinational delay of 45ns on a Virtex-5 with a latency of 1 cycle. 

The proposed DFP adder supports operations on the decimal64 format and it is easily extendable for the decimal128 format.  
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I. INTRODUCTION 

The binary floating point (BFP) arithmetic has certain flaws 

namely; it cannot provide correct decimal rounding and 

cannot precisely represent some decimal fractions such as 

0.001, 0.0475 etc [1]. There are many applications where a 

precision is required such as billing, insurance, currency 

conversion, banking and some scientific applications. 

European Union requires that currency conversion to and from 

EURO is to be calculated to six decimal digits [2]. One study 

estimates that errors generating from BFP arithmetic can sum 

up to a yearly billing of over dollar 5 million for a large 

billing organization [3]. Therefore decimal floating point 

(DFP) arithmetic becomes very important in many current and 

future applications as it has ability to represent decimal 

fractions precisely. DFP arithmetic also has the ability to 

provide correct decimal rounding that will mimic the manual 

rounding. 

 

Applications which cannot tolerate errors generating from 

BFP arithmetic, these application use software platforms to 

perform DFP arithmetic [1]. There are many software 

packages which are available for example: the java 

BigDecimal library [5] and IBM’s decNumber library [4]. 

Also Intel published results for a decimal arithmetic library 

which uses Binary integer decimal (BID) encoding. These 

software packages are good enough for current applications, 

but trends towards globalization and e-commerce are 

increasing, so faster response of these systems is required. 

Software designs to these systems may be inadequate with the 

increasing performance demands of future systems. So 

hardware implementation of these systems is the need of the 

hour. 

 

In 2008, the IEEE 754-1985 floating point standard has been 

revised and the new standard called the IEEE 754-2008 

floating point standard was setup [6], which includes 

specifications for DFP formats, encoding and operations. The 

IEEE 754-2008 standard includes an encoding format for DFP 

numbers in which the significand and the exponent (and the 

payloads of NaNs) can be encoded in two ways namely; 

binary encoding and decimal encoding. [7] 

 

Both the encoding formats break a number into a sign bit s, an 

exponent E, and a p-digit significand c. The value encoded is 

(−1)s × 10E × c. In both formats the range of possible values 

is identical, but the significand c is encoded differently. In the 

decimal encoding, it is encoded as a series of p decimal digits 

using the densely packed decimal encoding (DPD). In the 

binary encoding also known as binary integer decimal (BID) 

encoding, it is encoded as a binary number.  

 

In this paper a floating point adder unit is proposed. This 

floating point adder unit is IEEE P754 – 2008 complaint and 

based on densely packed decimal (DPD) encoding for DFP 

arithmetic. The proposed floating point adder unit uses low 

power equal bypass adder to reduce the power consumption of 

the design. 

II. DECIMAL FLOATING POINT 

REPRESENTATION 

In IEEE 754-2008, the value of a finite DFP number with an 

integer significant is 

v= (−1)s × 10q × c 
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Where ‘S’ is the sign, ‘q’ is the unbiased exponent, and ‘C’ is 

the significant. The precision or the length of the significant is 

denoted as ‘p’, which is equal to 7, l6, or 34 digits, for 

decimal32, decimal64, or decimall28, respectively. Figure 1.1 

shows the double precision decimal64 Decimal Floating Point 

format. 

Figure 1.1: Decimal 64 – Decimal floating point format DPD 

encoded .The l-bit Sign Field, S indicates the sign of a number. 

The (w+5)-bit Combination Field, G provides the most 

significand digit (MSD) of the significand and a non-negative 

biased exponent, E such that E = q + bias. The exponent is 

almost always encoded in binary. The G Field also indicates 

special values, such as Not-a-Number (NaN) and infinity (00). 

The remaining digits of the significand are specified in the t-

bit Trailing Significand Field, T. Table 1 shows the 

combination field. [DPD Paper] 

 

Table 1: Combination field 

III. DECIMAL FLOATING POINT ADDITION 

ALGORITHM 

Figure 1.2 shows the algorithm for adding two decimal floating 

point numbers encoded in DPD dec64 format. 

 

Figure 1.2: Floating Point Addition – Algorithm 

IV. DECIMAL FLOATING POINT ADDER  

IMPLEMENTATION 

 

 

 

Figure 1.3: Floating point adder: Architecture 

 

This architecture of floating point adder is proposed for IEEE 

754-2008 decimal64 format and it can easily be extended to 

128 bit format. 

 

Arrows shows the direction of data flow. The adder is 

designed as follows: the decoder unit decodes the decimal 64 

bit number and extracts sign (As, Bs), exponent (Aexp, Bexp) 

and mantissa (Amant, Bmant) information. The effective 

operation (EOP) logic defines the actual operation by xoring 

the two signs As and Bs. If both number are either positive or 

negative then the EOP is addition and if one of them is 

negative then the EOP is subtraction. We have two channels 

in our design Channel A and channel B, channel A is for large 

number and channel B is for smaller number. So next the two 

exponents are compared, if Ae is smaller than Be then 

numbers are swapped, the larger of two number is assigned to 

channel A and the smaller one is assigned to channel B using 

a swapping logic. Here the difference between two exponents 

is also computed and assigned to variable d. Next the mantissa 

Bm (smaller of two mantissa’s) is shifted right by amount “d” 

by barrel shifter. Now the two numbers are aligned for 

addition/subtraction.  

 

Number 

type 

Combination 

field 

Exponents 

Bits 

Significand 

MSD 

finite a b c d e a b 0 c d e 

finite 11 a b c a b 1 0 0 e 

infinite 1 1 1 1 0 . . . . . . 

NaN 1 1 1 1 1 . . . . . . 

Sign (s) Combination (w 

+ 5) 

Trailing 

Significand (c) 

1 Bit 13 bits 50 bits 

http://www.ijetajournal.org/


International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 3, May-June 2015 

ISSN: 2393 - 9516                    www.ijetajournal.org                                                       Page 85 

The effective operation is performed using a low power BCD 

adder. The effective operation is determined earlier using 

EOP. Next the rounding logic rounds the resultant mantissa. 

The sign, exponent and mantissa of resultant are encoded in 

IEEE P754-2008 decimal64 format. 

V.  LOW POWER ADDER DESIGN 

 

The floating point adder shown in figure 1.3 uses a 16 digit 

BCD adder for the addition of mantissa Am and Bm. Figure 

1.4 shows the 4 bit BCD adder, this BCD adder uses two 4 bit 

ripple carry adder, these 4 bit ripple carry adder uses 

conventional full adder 

. 

 

Figure 1.4: BCD adder 

Figure 1.5 shows the conventional full adder. All the logic 

gates in this design are applied with inputs all the time and 

this consumes power at all times, also the gate count for sum 

is two and the gate count for carry is three. We are replacing 

the conventional full adder by equal bypassing full adder. 

Figure 1.5 shows the low power low delay equal bypassed full 

adder.  

 

Figure 1.5: Conventional full adder 

 

Figure 1.6: Low power – low delay full adder 

 

In this full adder when input ‘A’ and input ‘B’ are equal then 

the output of XOR gate is ‘0’, this makes the control input of 

tri-state buffer ‘0’, now the output of tri-state inverter is high 

impedance ‘Z’, this blocks one channel of the multiplexer and 

reduces the power consumption. And if the two inputs ‘A’ and 

‘B’ are different then the output of the XOR gate is ‘1’ and 
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control input of tri-state inverter is also ‘1’, the input ‘C’ is 

complemented.  

 

Also at all times the gate count of Cout is reduces to 1, this is 

2 less than the conventional full adder. So the power 

consumption and delay of the BCD adder is reduced. [Low 

power adder] 

VI.    IMPLEMENTATION & RESULTS 

 

All logics were described in VHDL. The design has been 

implemented on Xilinx Virtex-5 device XC-5VLX30FF324-3. 

Resource utilization is shown in table 2. Design statics are 

shown in table 3. 

Table 2: Device Utilization Summary 

S.No. Resource Utilization 

1 Number of slice registers 5/19200 

2 Number of slice LUTs 803/19200 

Table 3: Design Statistics 

S.No. Cell Usage 

1 BELS 840 

1a    GND 1 

1b    LUT2 9 

1c    LUT3 101 

1d    LUT4 82 

1e    LUT5 180 

1f    LUT6 431 

1g    MUXF7 36 

2 FLIP FLOPS/LACTHES 7 

2a     LD 5 

2b     LDCP 2 

3 IO Buffers 193 

3a     IBUF 129 

3b     OBUF 64 

Table 4: Power Consumption 

S.no Frequency Static Dynamic Total 

1 10 Mhz 379 mw 24 mw 403mw 

2 50 Mhz 380 mw 118 mw 498 mw 

3 100 Mhz 382 mw 235 mw 617 mw 

4 200 Mhz 385 mw 471 mw 856 mw 

VII. CONCLUSION 

 

IEEE P754 compliant decimal floating point adder is 

successfully implemented on Virtex-5 device. The design was 

tested with several test vectors and no errors are found, so the 

design is behaving correctly. We have replaced the full adder 

of the BCD adder by a low power – low delay full adder to 

reduce the power consumption and the delay of the design. 

The design has a maximum combinational delay of 45 ns with 

the latency of 1 clock cycle. 

 

The low power – low delay adder can be further used in the 

implementation of multiplier and divider circuit and the 

complete floating point arithmetic and logic unit can be 

implemented on FPGA. This will reduce the power 

consumption of the complete design. Further clock gating 

techniques can be used to reduce the clock power. 
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