
International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 3, May-June 2015

ISSN: 2393 - 9516 www.ijetajournal.org Page 83

Implementation of Optimized Floating Point Adder on FPGA

Deepak Mishra [1], Vipul Agrawal [2]
*(Department of Electronics and Communication Engineering

Trinity Institute of Technology & Research

Bhopal - India

ABSTRACT
This paper presents the FPGA implementation of a Decimal Floating Point (DFP) adder. The design performs addition on 64-bit

operands that use the IEEE 754-2008 DPD encoding of DFP numbers. The design uses an equal bypass adder, this adder

reduces the power consumption and it also reduces the delay by reducing the gate count. The design also uses barrel shifter

instead of sequential shifter. The design has a maximum combinational delay of 45ns on a Virtex-5 with a latency of 1 cycle.

The proposed DFP adder supports operations on the decimal64 format and it is easily extendable for the decimal128 format.

Keywords:- Floating Point Adder, FPGA, Delay, Area Overhead

I. INTRODUCTION

The binary floating point (BFP) arithmetic has certain flaws

namely; it cannot provide correct decimal rounding and

cannot precisely represent some decimal fractions such as

0.001, 0.0475 etc [1]. There are many applications where a

precision is required such as billing, insurance, currency

conversion, banking and some scientific applications.

European Union requires that currency conversion to and from

EURO is to be calculated to six decimal digits [2]. One study

estimates that errors generating from BFP arithmetic can sum

up to a yearly billing of over dollar 5 million for a large

billing organization [3]. Therefore decimal floating point

(DFP) arithmetic becomes very important in many current and

future applications as it has ability to represent decimal

fractions precisely. DFP arithmetic also has the ability to

provide correct decimal rounding that will mimic the manual

rounding.

Applications which cannot tolerate errors generating from

BFP arithmetic, these application use software platforms to

perform DFP arithmetic [1]. There are many software

packages which are available for example: the java

BigDecimal library [5] and IBM’s decNumber library [4].

Also Intel published results for a decimal arithmetic library

which uses Binary integer decimal (BID) encoding. These

software packages are good enough for current applications,

but trends towards globalization and e-commerce are

increasing, so faster response of these systems is required.

Software designs to these systems may be inadequate with the

increasing performance demands of future systems. So

hardware implementation of these systems is the need of the

hour.

In 2008, the IEEE 754-1985 floating point standard has been

revised and the new standard called the IEEE 754-2008

floating point standard was setup [6], which includes

specifications for DFP formats, encoding and operations. The

IEEE 754-2008 standard includes an encoding format for DFP

numbers in which the significand and the exponent (and the

payloads of NaNs) can be encoded in two ways namely;

binary encoding and decimal encoding. [7]

Both the encoding formats break a number into a sign bit s, an

exponent E, and a p-digit significand c. The value encoded is

(−1)s × 10E × c. In both formats the range of possible values

is identical, but the significand c is encoded differently. In the

decimal encoding, it is encoded as a series of p decimal digits

using the densely packed decimal encoding (DPD). In the

binary encoding also known as binary integer decimal (BID)

encoding, it is encoded as a binary number.

In this paper a floating point adder unit is proposed. This

floating point adder unit is IEEE P754 – 2008 complaint and

based on densely packed decimal (DPD) encoding for DFP

arithmetic. The proposed floating point adder unit uses low

power equal bypass adder to reduce the power consumption of

the design.

II. DECIMAL FLOATING POINT

REPRESENTATION

In IEEE 754-2008, the value of a finite DFP number with an

integer significant is

v= (−1)s × 10q × c

RESEARCH ARTICLE OPEN ACCESS

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 3, May-June 2015

ISSN: 2393 - 9516 www.ijetajournal.org Page 84

Where ‘S’ is the sign, ‘q’ is the unbiased exponent, and ‘C’ is

the significant. The precision or the length of the significant is

denoted as ‘p’, which is equal to 7, l6, or 34 digits, for

decimal32, decimal64, or decimall28, respectively. Figure 1.1

shows the double precision decimal64 Decimal Floating Point

format.

Figure 1.1: Decimal 64 – Decimal floating point format DPD

encoded .The l-bit Sign Field, S indicates the sign of a number.

The (w+5)-bit Combination Field, G provides the most

significand digit (MSD) of the significand and a non-negative

biased exponent, E such that E = q + bias. The exponent is

almost always encoded in binary. The G Field also indicates

special values, such as Not-a-Number (NaN) and infinity (00).

The remaining digits of the significand are specified in the t-

bit Trailing Significand Field, T. Table 1 shows the

combination field. [DPD Paper]

Table 1: Combination field

III. DECIMAL FLOATING POINT ADDITION

ALGORITHM

Figure 1.2 shows the algorithm for adding two decimal floating

point numbers encoded in DPD dec64 format.

Figure 1.2: Floating Point Addition – Algorithm

IV. DECIMAL FLOATING POINT ADDER

IMPLEMENTATION

Figure 1.3: Floating point adder: Architecture

This architecture of floating point adder is proposed for IEEE

754-2008 decimal64 format and it can easily be extended to

128 bit format.

Arrows shows the direction of data flow. The adder is

designed as follows: the decoder unit decodes the decimal 64

bit number and extracts sign (As, Bs), exponent (Aexp, Bexp)

and mantissa (Amant, Bmant) information. The effective

operation (EOP) logic defines the actual operation by xoring

the two signs As and Bs. If both number are either positive or

negative then the EOP is addition and if one of them is

negative then the EOP is subtraction. We have two channels

in our design Channel A and channel B, channel A is for large

number and channel B is for smaller number. So next the two

exponents are compared, if Ae is smaller than Be then

numbers are swapped, the larger of two number is assigned to

channel A and the smaller one is assigned to channel B using

a swapping logic. Here the difference between two exponents

is also computed and assigned to variable d. Next the mantissa

Bm (smaller of two mantissa’s) is shifted right by amount “d”

by barrel shifter. Now the two numbers are aligned for

addition/subtraction.

Number

type

Combination

field

Exponents

Bits

Significand

MSD

finite a b c d e a b 0 c d e

finite 11 a b c a b 1 0 0 e

infinite 1 1 1 1 0

NaN 1 1 1 1 1

Sign (s) Combination (w

+ 5)

Trailing

Significand (c)

1 Bit 13 bits 50 bits

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 3, May-June 2015

ISSN: 2393 - 9516 www.ijetajournal.org Page 85

The effective operation is performed using a low power BCD

adder. The effective operation is determined earlier using

EOP. Next the rounding logic rounds the resultant mantissa.

The sign, exponent and mantissa of resultant are encoded in

IEEE P754-2008 decimal64 format.

V. LOW POWER ADDER DESIGN

The floating point adder shown in figure 1.3 uses a 16 digit

BCD adder for the addition of mantissa Am and Bm. Figure

1.4 shows the 4 bit BCD adder, this BCD adder uses two 4 bit

ripple carry adder, these 4 bit ripple carry adder uses

conventional full adder

.

Figure 1.4: BCD adder

Figure 1.5 shows the conventional full adder. All the logic

gates in this design are applied with inputs all the time and

this consumes power at all times, also the gate count for sum

is two and the gate count for carry is three. We are replacing

the conventional full adder by equal bypassing full adder.

Figure 1.5 shows the low power low delay equal bypassed full

adder.

Figure 1.5: Conventional full adder

Figure 1.6: Low power – low delay full adder

In this full adder when input ‘A’ and input ‘B’ are equal then

the output of XOR gate is ‘0’, this makes the control input of

tri-state buffer ‘0’, now the output of tri-state inverter is high

impedance ‘Z’, this blocks one channel of the multiplexer and

reduces the power consumption. And if the two inputs ‘A’ and

‘B’ are different then the output of the XOR gate is ‘1’ and

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 3, May-June 2015

ISSN: 2393 - 9516 www.ijetajournal.org Page 86

control input of tri-state inverter is also ‘1’, the input ‘C’ is

complemented.

Also at all times the gate count of Cout is reduces to 1, this is

2 less than the conventional full adder. So the power

consumption and delay of the BCD adder is reduced. [Low

power adder]

VI. IMPLEMENTATION & RESULTS

All logics were described in VHDL. The design has been

implemented on Xilinx Virtex-5 device XC-5VLX30FF324-3.

Resource utilization is shown in table 2. Design statics are

shown in table 3.

Table 2: Device Utilization Summary

S.No. Resource Utilization

1 Number of slice registers 5/19200

2 Number of slice LUTs 803/19200

Table 3: Design Statistics

S.No. Cell Usage

1 BELS 840

1a GND 1

1b LUT2 9

1c LUT3 101

1d LUT4 82

1e LUT5 180

1f LUT6 431

1g MUXF7 36

2 FLIP FLOPS/LACTHES 7

2a LD 5

2b LDCP 2

3 IO Buffers 193

3a IBUF 129

3b OBUF 64

Table 4: Power Consumption

S.no Frequency Static Dynamic Total

1 10 Mhz 379 mw 24 mw 403mw

2 50 Mhz 380 mw 118 mw 498 mw

3 100 Mhz 382 mw 235 mw 617 mw

4 200 Mhz 385 mw 471 mw 856 mw

VII. CONCLUSION

IEEE P754 compliant decimal floating point adder is

successfully implemented on Virtex-5 device. The design was

tested with several test vectors and no errors are found, so the

design is behaving correctly. We have replaced the full adder

of the BCD adder by a low power – low delay full adder to

reduce the power consumption and the delay of the design.

The design has a maximum combinational delay of 45 ns with

the latency of 1 clock cycle.

The low power – low delay adder can be further used in the

implementation of multiplier and divider circuit and the

complete floating point arithmetic and logic unit can be

implemented on FPGA. This will reduce the power

consumption of the complete design. Further clock gating

techniques can be used to reduce the clock power.

REFERENCES

[1] M.F. Cowlishaw, “Decimal Floating-Point: Algorism for

Computers,” Proc. IEEE 16th Symp. Computer

Arithmetic, pp. 104-111, 2003.

[2] IBM Corporation, The ‘Telco’ benchmark,

http://speleotrove.com/

Decimal/telcoSpec.html, 2005.

[3] D.-G. for Economic and F. A. C. from the Commission

to the European

 Council, “Review of the Introduction of Euro Notes and

Coins,” EURO

 PAPERS, Apr. 2002.

[4] M.F. Cowlishaw The decNumber library, v3.68. IBM,

http://speleotrove.- com/decimal/decnumber.pdf, 2013.

[5] S. Microsystems BigDecimal Class, Java 2 Platform

Standard ed. 5.0,

APISpecification,http://docs.oracle.com/javase/1.5.0/docs

/api/java/math/BigDecimal.html, 2013.

[6] M. Cornea, C. Anderson, J. Harrison, P.T.P. Tang, E.

Schneider, and C.

Tsen, “A Software Implementation of the IEEE 754R

Decimal Floating-Point Arithmetic Using the Binary

Encoding Format,” Proc. IEEE 18th Symp.

[7] ANSI/IEEE 754-1985, “Standard for Binary Floating-

Point Arithmetic”.

[8] R.K. Yu, G.B. Zyner, 167 MHz radix-4 floating point

multiplier, Proceedings 12th Symposium on Computer

Arithmetic, 1995, pp. 149-154.

[9] C. Gamez, R. Pang, Apparatus and method for rounding

operands, U.S. patent 5258943, 1993.

[10] M. Saishi, T. Minemaru, Multiplication circuit

having rounding function, U.S. patent 5500812, 1996.

[11] Guy Even, Silvia M. Mueller, Peter-Michael Seidel

“A dual precision IEEE Floating-point multiplier”

http://www.ijetajournal.org/

International Journal of Engineering Trends and Applications (IJETA) – Volume 2 Issue 3, May-June 2015

ISSN: 2393 - 9516 www.ijetajournal.org Page 87

Elsevier INTEGRATION, the VLSI journal 29 (2000)

167-180.

[12] C. Tsen, M.J. Schulte, and S.G. Navarro, “Hardware

Design of a Binary Integer Decimal Based IEEE P754

Rounding Unit,” Proc. IEEE 18th Int’l Conf. Application-

Specific Systems, Architectures and Processors, pp. 115-

121, 2007.

[13] B.J. Hickmann, A. Krioukov, M.J. Schulte, and M.A.

Erle, “A Parallel IEEE P754 Decimal Floating-Point

Multiplier,” Proc. IEEE 25th Int’l Conf. Computer

Design, 2007.

[14] C. Tsen, S.G. Navarro, M.J. Schulte, B. Hickmann, and

K. Compton, “A Combined Decimal and Binary Floating-

Point Multiplier,” Proc. IEEE 20th Int’l Conf.

Application-Specific Systems, Architectures, and

Processors, pp. 8-15, 2009.

[15] J. Di and J. S. Yuan, “Power-aware pipelined multiplier

design based on 2-dimensional pipeline gating,” in 13th

Great Lakes Symposium on VLSI. ACM, 2003, pp. 64–67.

[16] Sunjoo Hong, Taehwan Roh and Hoi-Jun Yoo, “a 145w

8×8 parallel multiplier based on optimized bypassing

architecture”, department of electrical engineering, Korea

advanced institute of science and technology (KAIST),

Daejeon, Republic of Korea, IEEE, pp.1175-1178, 2011.

[17] Yin-Tsung Hwang, Jin-Fa Lin, Ming-Hwa Sheu and

Chia-Jen Sheu, “low power multipliers using enhenced

row bypassing schemes”, department of electronic

engineering, National Yunlin University of science &

technology, Touliu, Yunlin, Taiwan, IEEE, pp.136-140,

2007.

[18] George Economakos, Dimitris Bekiaris and Kiamal

Pekmestzi, “a mixed style architecture for low power

multipliers based on a bypass technique”, national

technical University of Athens, school of electrical and

computer engineering, heroon polytechniou 9, GR-15780

Athens, Greece, IEEE, pp.4-6, 2010.

[19] Meng-Lin Hsia and Oscal T.-C. Chen, “low power

multiplier optimized by partial-product summation and

adder cells”, dept. of electrical engineering, national

chung cheng University, chia-yi, 621, Taiwan, IEEE,

pp.3042-3045, 2009. [12] P. C. H. Meier, “analysis and

design of low power digital multipliers”, Ph.D. thesis,

Carnegie Mellon University, dept. of electrical and

computer engineering, Pittsburgh, Pennsylvania, 1999.

[20] Carlos Minchola, Martin Vazquez and Gustavo Sutter

“A FPGA IEEE 754 2008 decimal floating point adder

subtractor” 2011 IEEE.

[21] Yanyu Ding, Deming Wang, Jianguo Hu and Hongzhou

Tan, “A Low power Parallel Multiplier Based on

Optimized-Equal-Bypassing-Technique”, Third

International Conference on Information Science and

Technology March, 2013 IEEE, China

http://www.ijetajournal.org/

